cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137339 A triangular sequence from a functional coefficient expansion of a raising factorial type: p(x,t)=1/(1-t)^(m*x);m=3.

Original entry on oeis.org

1, 0, 3, 0, 3, 9, 0, 6, 27, 27, 0, 18, 99, 162, 81, 0, 72, 450, 945, 810, 243, 0, 360, 2466, 6075, 6885, 3645, 729, 0, 2160, 15876, 43848, 59535, 42525, 15309, 2187, 0, 15120, 117612, 354564, 548289, 476280, 234738, 61236, 6561, 0, 120960, 986256, 3189348
Offset: 1

Views

Author

Roger L. Bagula, Apr 20 2008

Keywords

Comments

Row sums are:
{1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800}
Also the Bell transform of A052560. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			{1},
{0, 3},
{0, 3, 9},
{0, 6, 27, 27},
{0, 18, 99, 162, 81},
{0, 72, 450, 945, 810, 243},
{0, 360, 2466, 6075, 6885, 3645, 729},
{0, 2160, 15876, 43848, 59535, 42525, 15309, 2187},
{0, 15120, 117612, 354564, 548289, 476280, 234738, 61236, 6561},
{0, 120960, 986256, 3189348, 5450004, 5455107, 3306744, 1194102, 236196, 19683},
{0, 1088640, 9239184, 31662900, 58618080, 65445975, 46126017, 20667150, 5708070, 885735, 59049}
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62 - 63

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> 3*n!, 8); # Peter Luschny, Jan 27 2016
  • Mathematica
    Clear[p, g, m]; m = 3; p[t_] = 1/(1 - t)^(m*x); Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[3#!&, rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

p(x,t)=1/(1-t)^(m*x)=Sum[s(x,n)*t^n/n!;m=3. out_n,m=n!*Coefficients( s(x,n)).