A137350 A triangular Sequence of coefficients of a three deep polynomial recursion based on a Chebyshev kind and a Padovan recursion: Chebyshev; p(x,n)=x*p(x,n-1)-p(x,n-2); Padovan: a(n)=a(n-2)+a(n-3); Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3).
1, -1, 1, 0, 1, -1, -1, 1, 1, -1, 1, 0, -2, -1, 1, 1, 2, -2, 1, -1, 1, -3, -1, 1, 0, 3, 3, -3, 1, -1, -3, 3, -4, -1, 1, 1, -1, 6, 4, -4, 1
Offset: 1
Examples
{1}, {-1, 1}, {0, 1}, {-1, -1, 1}, {1, -1, 1}, {0, -2, -1, 1}, {1, 2, -2, 1}, {-1, 1, -3, -1, 1}, {0, 3, 3, -3, 1}, {-1, -3, 3, -4, -1, 1}, {1, -1, 6, 4, -4, 1}
Programs
-
Mathematica
Clear[Q, x] Q[x, -2] = 1 - x; Q[x, -1] = 0; Q[x, 0] = 1; Q[x_, n_] := Q[x, n] = x*Q[x, n - 2] - Q[x, n - 3]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3).
Comments