cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137360 a(n) = Sum_{k <= n/2 } k*binomial(n-2k, 3k+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 15, 35, 70, 128, 226, 402, 735, 1375, 2588, 4830, 8882, 16108, 28943, 51785, 92573, 165525, 295869, 528069, 940259, 1669725, 2957941, 5229953, 9233748, 16284106, 28688451, 50490125, 88765885, 155891305, 273495479, 479360847, 839451764
Offset: 0

Views

Author

Don Knuth, Apr 11 2008

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[35, 15, 5, 1, 0$6]]). Matrix (10, (i,j)-> if i=j-1 then 1 elif j=1 then [6, -15, 20, -15, 8, -7, 6, -2, 0, -1][i] else 0 fi)^n)[1,10]: seq (a(n), n=0..50);  # Alois P. Heinz, Oct 23 2008
  • Mathematica
    Table[Sum[k Binomial[n-2k,3k+1],{k,n/2}],{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,8,-7,6,-2,0,-1},{0,0,0,0,0,0,1,5,15,35},40] (* Harvey P. Dale, May 31 2017 *)

Formula

G.f.: x^6*(1-x)/(x^5+x^3-3*x^2+3*x-1)^2. - Alois P. Heinz, Oct 23 2008