A137363 Triangular sequence of coefficients based on a Hilbert Transform of A053120: Chebyshev T(x,n); Coefficients(A053120[n,m])-Floor[Imaginary part of( HilbertTransform(A053120(n,m))];.
1, 0, 1, -1, -1, 2, 4, -3, -3, 4, 1, 6, -8, -9, 8, 7, 5, 15, -20, -20, 16, -1, -3, 18, 37, -48, -46, 32, 26, -6, -19, 57, 95, -112, -99, 64, 1, 16, -32, -80, 160, 233, -256, -213, 128, 86, 9, 54, -120, -254, 432, 566, -576, -450, 256, -1, 14, 50, 174, -400, -746, 1120, 1344, -1280, -947, 512
Offset: 1
Examples
a-b: {1}, {0, 1}, {-1, -1, 2}, {4, -3, -3, 4}, {1, 6, -8, -9, 8}, {7, 5, 15, -20, -20, 16}, {-1, -3, 18, 37, -48, -46, 32}, {26, -6, -19, 57, 95, -112, -99, 64}, {1, 16, -32, -80,160, 233, -256, -213, 128}, {86, 9, 54, -120, -254, 432, 566, -576, -450,256}, {-1, 14, 50, 174, -400, -746, 1120, 1344, -1280, -947, 512} a+b: {1}, {0, 1}, {-1, 1, 2}, {-4, -3, 3, 4}, {1, -6, -8, 9, 8}, {-7, 5, -15, -20, 20, 16}, {-1, 3, 18, -37, -48, 46, 32}, {-26, -8, 19, 55, -95, -112,99, 64}, {1, -16, -32, 80, 160, -233, -256, 213, 128}, {-86, 9, -54, -120, 254, 432, -566, -576, 450, 256}, {-1, -14, 50, -174, -400,746, 1120, -1344, -1280, 947, 512}
References
- Wilbur R. LePage, Complex Variables and the Laplace Transform for Engineers,Dover, New York,1961, page 225.
- P. J. Olver, Classical Invariant Theory, Cambridge Univ. Press, p. 222.
- http://jowett.home.cern.ch/jowett/Mathematica/Accelerator/Hilbert.nb
Crossrefs
Cf. A053120.
Programs
-
Mathematica
HilbertTransform[x_List] := Module[{nx, n, y}, nx = Length[x]; xn = If[EvenQ[nx], x, Append[x, 0]]; n = Length[xn]; y = Fourier[xn]; h = Flatten[{1, Table[2, {k, 2, n/2}], 1, Table[0, {k, n/2 + 2, n}]}]; Take[InverseFourier[h y], nx]]; a = Table[CoefficientList[ChebyshevT[n, x], x], {n, 0, 10}]; b = Table[Floor[Im[ HilbertTransform[CoefficientList[ChebyshevT[n, x], x]]]], {n, 0, 10}]; a-b
Comments