A137372 Triangle read by rows: coefficients of Fermat-Lucas polynomials.
2, 0, 3, -4, 0, 9, 0, -18, 0, 27, 8, 0, -72, 0, 81, 0, 60, 0, -270, 0, 243, -16, 0, 324, 0, -972, 0, 729, 0, -168, 0, 1512, 0, -3402, 0, 2187, 32, 0, -1152, 0, 6480, 0, -11664, 0, 6561, 0, 432, 0, -6480, 0, 26244, 0, -39366, 0, 19683, -64, 0, 3600, 0, -32400, 0, 102060, 0, -131220, 0, 59049
Offset: 0
Examples
The first few polynomials are: 2; 3*y; -4 + 9*y^2; -18*y + 27*y^3; ... Triangle begins: 2; 0, 3; -4, 0, 9; 0, -18, 0, 27; 8, 0, -72, 0, 81; 0, 60, 0, -270, 0, 243; -16, 0,324, 0, -972, 0, 729; 0, -168, 0, 1512, 0, -3402, 0, 2187; 32, 0, -1152, 0, 6480, 0, -11664, 0, 6561; 0, 432, 0, -6480, 0, 26244, 0, -39366, 0, 19683; -64, 0, 3600, 0, -32400, 0, 102060, 0, -131220, 0, 59049; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- Eric Weisstein's World of Mathematics, Fermat-Lucas Polynomial.
Crossrefs
Row sums are A000051.
Programs
-
Mathematica
<< Lucas`; Table[ExpandAll[Fermatf[n, x]], {n, 0, 10}]; a = Table[CoefficientList[Fermatf[n, x], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[Fermatf[n, x], x]], {n, 0, 10}]
-
PARI
T(n,k)=polcoef(polcoef((2 - 3*x*y)/(1 - 3*y*x + 2*x^2) + O(x*x^n), n, x), k, y); for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 20 2018
Formula
G.f.: (2 - 3*x*y)/(1 - 3*y*x + 2*x^2). - Andrew Howroyd, Aug 21 2018
Extensions
Offset corrected and name clarified by Andrew Howroyd, Aug 20 2018
Comments