cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137401 a(n) is the number of ordered solutions (x,y,z) to x^3 + y^3 == z^3 mod n with 1 <= x,y,z <= n-1.

Original entry on oeis.org

0, 0, 2, 7, 12, 20, 0, 63, 116, 72, 90, 131, 0, 108, 182, 339, 240, 602, 324, 415, 326, 420, 462, 839, 604, 216, 1808, 763, 756, 812, 810, 1735, 992, 1056, 1092, 3311, 648, 1620, 650, 2511, 1560, 1640, 1134, 2227, 4328, 1980, 2070, 3683, 2484, 2644, 2450, 1519
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Apr 11 2008

Keywords

Comments

Record values of A137401: 0, 2, 7, 12, 20, 63, 116, 131, 182, 339, 602, 839, 1808, 3311, 4328, 7964, 8864, 9231, 19583, 21986, 41363, 52676, 81467, 87596, 92087, 112616, 236951, 247940, 378071, 386423, 521135, ... - Robert G. Wilson v

Examples

			a(4)=7 because (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 3), (3, 1, 2), (3, 2, 3) are solutions for n=4.
		

Crossrefs

Cf. A063454.

Programs

  • Mathematica
    f[n_] := Block[ {c = 0}, Do[ If[ Mod[x^3 + y^3, n] == Mod[z^3, n], c++ ], {x, n - 1}, {y, n - 1}, {z, n - 1}]; c];
    Table[Length[Select[Tuples[Range[n - 1], 3], Mod[ #[[1]]^3 + #[[2]]^3 - #[[3]]^3, n] == 0 &]], {n, 2, 50}] (* Stefan Steinerberger, Apr 12 2008 *)
  • Python
    def A137401(n):
        ndict = {}
        for i in range(1,n):
            m = pow(i,3,n)
            if m in ndict:
                ndict[m] += 1
            else:
                ndict[m] = 1
        count = 0
        for i in ndict:
            ni = ndict[i]
            for j in ndict:
                k = (i+j) % n
                if k in ndict:
                    count += ni*ndict[j]*ndict[k]
        return count # Chai Wah Wu, Jun 06 2017

Formula

a(n) = A063454(n)-3*A087786(n)+3*A000189(n)-1. - Vladeta Jovovic, Apr 11 2008

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Apr 12 2008