A137421 Decimal expansion of growth constant in random Fibonacci sequence.
1, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8, 2, 6, 9, 5, 7, 8, 0, 5, 2, 5
Offset: 1
Examples
1.20556943040059031170202861778382342637710891959769944...
Links
- Elise Janvresse, Benoît Rittaud and Thierry De La Rue, Growth rate for the expected value of a generalized random Fibonacci sequence, arXiv:0804.2400 [math.PR], 2008.
- Benoît Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
- Benoît Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0). See p. 119. [Broken link]
- Index entries for algebraic numbers, degree 3
Programs
-
Maple
Digits := 80 ; fsolve( x^3-2*x^2-1,x,2.2..2.3)-1.0 ; # R. J. Mathar, Apr 23 2008
-
Mathematica
RealDigits[Root[x^3 + x^2 - x - 2, x, 1], 10, 98] // First (* Jean-François Alcover, Aug 06 2014 *)
-
PARI
real(polroots(x^3+x^2-x-2)[1]) \\ Charles R Greathouse IV, May 28 2011
-
PARI
polrootsreal(x^3+x^2-x-2)[1] \\ Charles R Greathouse IV, May 14 2014
Formula
In the book by Benoît Rittaud et al. it is stated that this number is cube_root(43/54+sqrt(59/108))+cube_root(43/54-sqrt(59/108))-1/3. - Eric Desbiaux, Sep 13 2008, Oct 17 2008
The largest real solution of x = sqrt(1+sqrt(-1+x)). - Stanislav Sykora, May 08 2016
From Wolfdieter Lang, Oct 17 2022: (Start)
Equals ((4*(43 + 3*sqrt(177)))^(1/3) + 16*(4*(43 + 3*sqrt(177)))^(-1/3) - 2)/6.
Equals ((4*(43 + 3*sqrt(177)))^(1/3) + (4*(43 - 3*sqrt(177)))^(1/3) - 2)/6.
Equals (4*cosh((1/3)*arccosh(43/16)) - 1)/3. (End)
Extensions
More terms from R. J. Mathar, Apr 23 2008
More terms from Jean-François Alcover, Aug 06 2014
Comments