cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137433 Coefficients of A000930 expansion similar to that given for Fibonacci numbers in Roman's Umbral Calculus.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 8, 3, 1, 0, 30, 35, 6, 1, 0, 144, 230, 95, 10, 1, 0, 1200, 1954, 945, 205, 15, 1, 0, 10800, 19824, 11494, 2835, 385, 21, 1, 0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1, 0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 17 2008

Keywords

Comments

Row sums:
{1, 1, 2, 12, 72, 480, 4320, 45360, 524160, 6894720, 101606400}
Row_sum(n)/n!=A000930(n)

Examples

			{1},
{0, 1},
{0, 1, 1},
{0, 8, 3, 1},
{0, 30, 35, 6, 1},
{0, 144, 230, 95, 10, 1},
{0, 1200, 1954, 945, 205, 15, 1},
{0, 10800, 19824, 11494, 2835, 385, 21, 1},
{0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1},
{0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1},
{0, 16692480, 37802736, 31266540, 12628160, 2814525, 370713, 29610, 1590, 45, 1}
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150

Crossrefs

Programs

  • Mathematica
    Clear[p, g]; p[t_] = 1/(1 - t - t^3)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

Formula

Coefficients expansion of p(x,n) in f(x,t)=1/(1-t-t^3)^x=Sum[p(x,n)*t^n/n!m{n,1,Infinity}]