A137433 Coefficients of A000930 expansion similar to that given for Fibonacci numbers in Roman's Umbral Calculus.
1, 0, 1, 0, 1, 1, 0, 8, 3, 1, 0, 30, 35, 6, 1, 0, 144, 230, 95, 10, 1, 0, 1200, 1954, 945, 205, 15, 1, 0, 10800, 19824, 11494, 2835, 385, 21, 1, 0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1, 0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1
Offset: 1
Examples
{1}, {0, 1}, {0, 1, 1}, {0, 8, 3, 1}, {0, 30, 35, 6, 1}, {0, 144, 230, 95, 10, 1}, {0, 1200, 1954, 945, 205, 15, 1}, {0, 10800, 19824, 11494, 2835, 385, 21, 1}, {0, 105840, 216012, 149212, 45409, 7000, 658, 28, 1}, {0, 1249920, 2692080, 2055500, 740124, 140889, 15120, 1050, 36, 1}, {0, 16692480, 37802736, 31266540, 12628160, 2814525, 370713, 29610, 1590, 45, 1}
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
Programs
-
Mathematica
Clear[p, g]; p[t_] = 1/(1 - t - t^3)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
Formula
Coefficients expansion of p(x,n) in f(x,t)=1/(1-t-t^3)^x=Sum[p(x,n)*t^n/n!m{n,1,Infinity}]
Comments