A137449 A triangular sequence based on concepts of operations on existing sequences: in this case the H(x,n) ( A060821) traditional Hermite is differentiated twice : p(x,n)=-x^2*H''(x,n)+H(x,n).
1, 1, 1, -2, 0, -4, 0, -12, 0, -40, 12, 0, 48, 0, -176, 0, 120, 0, 800, 0, -608, -120, 0, -720, 0, 5280, 0, -1856, 0, -1680, 0, -16800, 0, 25536, 0, -5248, 1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080, 0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352, -30240, 0, -302400, 0, 4435200, 0, -4677120, 0
Offset: 1
Examples
{1}, {1, 1}, {-2, 0, -4}, {0, -12, 0, -40}, {12, 0, 48, 0, -176}, {0, 120,0, 800, 0, -608}, {-120, 0, -720, 0, 5280, 0, -1856}, {0, -1680, 0, -16800, 0, 25536, 0, -5248}, {1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080}, {0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352}, {-30240, 0, -302400, 0, 4435200, 0, -4677120,0, 1267200, 0, -91136}
Programs
-
Mathematica
Clear[p, x, a] p[x, 0] = 1; p[x, 1] = x + 1; p[x_, n_] := p[x, n] = -x^2*D[HermiteH[n, x], {x, 2}] + HermiteH[n, x]; Table[Expand[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,n)=-x^2*H''(x,n)+H(x,n)
Comments