A137456 A triangular sequence of coefficients of a partition two types polynomials; of Chebyshev of the first kind polynomials (A053120) and Hermite polynomials (A060821): p(x,n) = T(x,n)*H(x,n).
1, 0, 0, 2, 2, 0, -8, 0, 8, 0, 0, 36, 0, -72, 0, 32, 12, 0, -144, 0, 496, 0, -512, 0, 128, 0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512, 120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048, 0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0, 372736, 0, -100352, 0, 8192
Offset: 1
Examples
Triangle begins: {1}, {0, 0, 2}, {2, 0, -8, 0, 8}, {0, 0, 36, 0, -72, 0, 32}, {12, 0, -144, 0, 496, 0, -512, 0, 128}, {0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512}, {120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048}, {0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0,372736, 0, -100352, 0, 8192}, ...
Programs
-
Mathematica
a = Table[CoefficientList[ChebyshevT[n, x]*HermiteH[n, x], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,n) = T(x,n)*H(x,n).
Comments