cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274363 Numbers n such that n and n+1 both have 26 divisors.

Original entry on oeis.org

689278976, 38492803071, 100821266432, 147331919871, 421606494207, 560920563711, 732088143872, 753855967232, 918212890624, 1218308829183, 1414219239423, 1485254832128, 1544826179583, 1566594002943, 1671079555071, 1675433119743, 1681165242368
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A137489.

Programs

  • PARI
    is(n)=numdiv(n)==26 && numdiv(n+1)==26
    
  • PARI
    has(n)=if(n%4==2,ispower(n/2,12,&n) && isprime(n), bitand(n,8191)==4096 && isprime(n>>12) && n>8192) \\ check if n is even with 26 divisors
    list(lim)=my(v=List(),t); forprime(p=2,sqrtnint(lim\=1,25), t=p^25; if(has(t+1), listput(v,t)); if(has(t-1), listput(v,t-1))); forprime(p=3,sqrtnint(lim\3,12), my(p12=p^12); forprime(q=3,lim\p12, if(p==q,next); t=p12*q; if(has(t+1), listput(v,t)); if(has(t-1), listput(v,t-1)))); Set(v)

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015
Showing 1-2 of 2 results.