cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137493 Numbers with 30 divisors.

Original entry on oeis.org

720, 1008, 1200, 1584, 1620, 1872, 2268, 2352, 2448, 2592, 2736, 2800, 3312, 3564, 3888, 3920, 4050, 4176, 4212, 4400, 4464, 4608, 5200, 5328, 5508, 5808, 5904, 6156, 6192, 6768, 6800, 7452, 7500, 7600, 7632, 7938, 8112, 8496, 8624, 8784, 9200, 9396
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A137492 (29 divs), A139571 (31 divs).

Programs

  • Mathematica
    Select[Range[10000],DivisorSigma[0,#]==30&]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    is(n)=numdiv(n)==30 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    list(lim)=
    {
      my(f=(v,s)->concat(v,listsig(lim,s,1)));
      Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]]));
    }
    listsig(lim, sig, coprime)=
    {
      my(e=sig[1]);
      if(#sig<2,
        if(#sig==0 || sig[1]==0, return(if(lim<1,[],[1])));
        my(P=primes([2,sqrtnint(lim\1,e)]));
        if(coprime==1, return(if(e>1,apply(p->p^e,P),P)));
        P=select(p->gcd(p,coprime)==1, P);
        if(e>1, P=apply(p->p^e, P));
        return(P);
      );
      my(v=List(),ss=sig[2..#sig],t=leastOfSig(ss));
      forprime(p=2,sqrtnint(lim\t,e),
        if(coprime%p,
            my(u=listsig(lim\p^e,ss,coprime*p));
            for(i=1,#u, listput(v,p^e*u[i]));
        )
      );
      Vec(v);
    } \\ Charles R Greathouse IV, Nov 18 2021

Formula

A000005(a(n))=30.