cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137501 The even numbers repeated, with alternating signs.

Original entry on oeis.org

0, 0, 2, -2, 4, -4, 6, -6, 8, -8, 10, -10, 12, -12, 14, -14, 16, -16, 18, -18, 20, -20, 22, -22, 24, -24, 26, -26, 28, -28, 30, -30, 32, -32, 34, -34, 36, -36, 38, -38, 40, -40, 42, -42, 44, -44, 46, -46, 48, -48, 50, -50, 52, -52, 54, -54, 56, -56, 58, -58, 60, -60, 62, -62, 64, -64, 66, -66, 68, -68, 70, -70, 72, -72, 74
Offset: 0

Views

Author

Carlos Alberto da Costa Filho (cacau_dacosta(AT)hotmail.com), Apr 22 2008

Keywords

Comments

The general formula for alternating sums of powers of even integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,1)-(-1)^k P(n,2k+1))/2. Here n=1 and k shifted one place, thus a(k) = (P(1,1)-(-1)^(k-1) P(1,2(k-1)+1))/2. - Peter Luschny, Jul 12 2009
With just one 0 at the beginning, this is a permutation of all the even integers. - Alonso del Arte, Jun 24 2012

Crossrefs

Programs

  • Maple
    den:= n -> (n-1/2+1/2*(-1)^n)*(-1)^n: seq(den(n),n=-10..10);
    a := n -> (1+(-1)^n*(2*n-1))/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Flatten[Table[{2n, -2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
    With[{enos=2*Range[0,40]},Riffle[enos,-enos]] (* Harvey P. Dale, Oct 12 2014 *)

Formula

a(n) = ( n - (1/2) + (1/2)*(-1)^n )*(-1)^n.
From R. J. Mathar, Feb 14 2010: (Start)
a(n) = -a(n-1) + a(n-2) + a(n-3).
G.f.: 2*x^2/((1-x) * (1+x)^2). (End)
a(n) = A064455(n) - A123684(n). - Jaroslav Krizek, Mar 22 2011