A137561 A triangular sequence of coefficients of the fixed point Chebyshev polynomials: p(x,n)=T(x,n)-x:A053120[x,n]-x.
1, -1, 0, -1, -1, 2, 0, -4, 0, 4, 1, -1, -8, 0, 8, 0, 4, 0, -20, 0, 16, -1, -1, 18, 0, -48, 0, 32, 0, -8, 0, 56, 0, -112, 0, 64, 1, -1, -32, 0, 160, 0, -256, 0, 128, 0, 8, 0, -120, 0, 432, 0, -576, 0, 256, -1, -1, 50, 0, -400, 0, 1120, 0, -1280, 0, 512
Offset: 1
Examples
{1, -1}, {0}, {-1, -1, 2}, {0, -4, 0, 4}, {1, -1, -8, 0, 8}, {0, 4, 0, -20, 0, 16}, {-1, -1,18, 0, -48, 0, 32}, {0, -8, 0, 56, 0, -112, 0, 64}, {1, -1, -32, 0, 160, 0, -256, 0, 128}, {0, 8, 0, -120, 0, 432, 0, -576, 0, 256}, {-1, -1,50, 0, -400, 0, 1120, 0, -1280, 0, 512}
References
- Lennart Carleson, Theodore W. Gamelin, Complex Dynamics, Springer,New York,1993,Chapter II, page 27 ff
Programs
-
Mathematica
Table[ChebyshevT[n, x] - x, {n, 0, 10}]; a = Table[CoefficientList[ChebyshevT[n, x] - x, x], {n, 0, 10}]; Flatten[{{1, -1}, {0}, {-1, -1, 2}, {0, -4, 0, 4}, {1, -1, -8, 0, 8}, {0, 4, 0, -20, 0, 16}, {-1, -1, 18, 0, -48, 0, 32}, {0, -8, 0, 56, 0, -112, 0, 64}, {1, -1, -32, 0, 160, 0, -256, 0, 128}, {0, 8, 0, -120, 0, 432, 0, -576, 0, 256}, {-1, -1, 50, 0, -400, 0, 1120, 0, -1280, 0, 512}}]
Comments