cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137591 Number of parenthesizings of products formed by n factors assuming nonassociativity and partial commutativity: individual factors commute, but bracketed expressions don't commute with anything.

Original entry on oeis.org

1, 1, 6, 54, 660, 10260, 194040, 4326840, 111177360, 3234848400, 105135861600, 3775206204000, 148426878600000, 6341634955656000, 292576856395824000, 14496220038251952000, 767691210706291872000, 43274547687106768032000, 2587028200730649643968000, 163484729048197101504960000
Offset: 1

Views

Author

Thomas Wieder, Jan 28 2008, Feb 07 2008

Keywords

Comments

See the double factorials A001147 for the case when the product is commutative and nonassociative.
Another interpretation is possible in terms of dendrograms. A001147 gives the number labeled, non-ranked, binary dendrograms, so-called L-NR dendrograms. This sequence gives the number of L-NR dendrograms if the order of objects counts within a dendrogram class.
See the Murtagh paper cited in A001147 for more on dendrograms. See also Vandev.
Vandev's formula (1) is our recurrence for this sequence, but it seems that Vandev meant a(n) = Sum_{k=1..n-1} binomial(n-1, k)*a(k)*a(n-k) with a(1)=1, a(2)=1. This recurrence gives the double factorials.

Examples

			a(4)=54 because we have
w(x(yz)), w((yz)x), (x(yz))w, ((yz)x)w,
w(y(xz)), w((xz)y), (y(xz))w, ((xz)y)w,
w(z(xy)), w((xy)z), (z(xy))w, ((xy)z)w,
x(w(yz)), x((yz)w), (w(yz))x, ((yz)w)x,
x(y(wz)), x((wz)y), (y(wz))x, ((wz)y)x,
x(z(wy)), x((wy)z), (z(wy))x, ((wy)z)x,
y(w(xz)), y((xz)w), (w(xz))y, ((xz)w)y,
y(x(wz)), y((wz)x), (x(wz))y, ((wz)x)y,
y(z(wx)), y((wx)z), (z(wx))y, ((wx)z)y,
z(w(xy)), z((xy)w), (w(xy))z, ((xy)w)z,
z(x(wy)), z((wy)x), (x(wy))z, ((wy)x)z,
z(y(wx)), z((wx)y), (y(wx))z, ((wx)y)z,
(wx)(yz), (yz)(wx)
(wy)(xz), (xz)(wy)
(wz)(xy), (xy)(wz)
and 12*4 + 3*2 = 48 + 6 = 54.
Note that:
w(x(yz)) is equivalent to w(x(zy)) but not to (x(yz))w or w((yz)x);
(wx)(yz) is equivalent to (xw)(yz) or (wx)(zy) but not to (yz)(wx).
		

Crossrefs

Programs

  • GAP
    a := [1,1];; for n in [3..10^2] do a[n] := Sum([1..n-1],k->Binomial(n,k)*a[k]*a[n-k]); od; a; # Muniru A Asiru, Jan 30 2018
  • Maple
    H(1):=1; H(2):=1; for n from 3 to 12 do H(n):=0: for k from 1 to n-1 do H(n):= H(n)+binomial(n,k)*H(k)*H(n-k) od: print(H(n)); od:
  • Mathematica
    CoefficientList[Series[(1-x)/Sqrt[1-4*x+2*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    x='x+O('x^66); Vec( serlaplace((1-x)/sqrt(1-4*x+2*x^2)) ) \\ Joerg Arndt, Oct 08 2013
    

Formula

a(n) = Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k), with a(1)=1, a(2)=1.
E.g.f.: (1/2)*(1 - sqrt(1 - 4*x + 2*x^2)). - Thomas Wieder, May 02 2009, edited by May Cai, Feb 13 2024
a(n) ~ sqrt(2+2*sqrt(2))/2 * n^n * (2+sqrt(2))^n / exp(n). - Vaclav Kotesovec, Oct 07 2013

Extensions

Added more terms, Joerg Arndt, Oct 08 2013
Name corrected by Andrey Zabolotskiy, Mar 06 2018