A137591 Number of parenthesizings of products formed by n factors assuming nonassociativity and partial commutativity: individual factors commute, but bracketed expressions don't commute with anything.
1, 1, 6, 54, 660, 10260, 194040, 4326840, 111177360, 3234848400, 105135861600, 3775206204000, 148426878600000, 6341634955656000, 292576856395824000, 14496220038251952000, 767691210706291872000, 43274547687106768032000, 2587028200730649643968000, 163484729048197101504960000
Offset: 1
Keywords
Examples
a(4)=54 because we have w(x(yz)), w((yz)x), (x(yz))w, ((yz)x)w, w(y(xz)), w((xz)y), (y(xz))w, ((xz)y)w, w(z(xy)), w((xy)z), (z(xy))w, ((xy)z)w, x(w(yz)), x((yz)w), (w(yz))x, ((yz)w)x, x(y(wz)), x((wz)y), (y(wz))x, ((wz)y)x, x(z(wy)), x((wy)z), (z(wy))x, ((wy)z)x, y(w(xz)), y((xz)w), (w(xz))y, ((xz)w)y, y(x(wz)), y((wz)x), (x(wz))y, ((wz)x)y, y(z(wx)), y((wx)z), (z(wx))y, ((wx)z)y, z(w(xy)), z((xy)w), (w(xy))z, ((xy)w)z, z(x(wy)), z((wy)x), (x(wy))z, ((wy)x)z, z(y(wx)), z((wx)y), (y(wx))z, ((wx)y)z, (wx)(yz), (yz)(wx) (wy)(xz), (xz)(wy) (wz)(xy), (xy)(wz) and 12*4 + 3*2 = 48 + 6 = 54. Note that: w(x(yz)) is equivalent to w(x(zy)) but not to (x(yz))w or w((yz)x); (wx)(yz) is equivalent to (xw)(yz) or (wx)(zy) but not to (yz)(wx).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- May Cai, Kisun Lee, and Josephine Yu, Symmetric Tropical Rank 2 Matrices, arXiv:2404.08121 [math.CO], 2024. See p. 12.
- Dimitar L. Vandev, Random Dendrograms. Statistical Data Analysis, Proceedings SDA-95, SDA-96, pp. 186-196. [Cached copy from citeseerx.ist.psu.edu]
Programs
-
GAP
a := [1,1];; for n in [3..10^2] do a[n] := Sum([1..n-1],k->Binomial(n,k)*a[k]*a[n-k]); od; a; # Muniru A Asiru, Jan 30 2018
-
Maple
H(1):=1; H(2):=1; for n from 3 to 12 do H(n):=0: for k from 1 to n-1 do H(n):= H(n)+binomial(n,k)*H(k)*H(n-k) od: print(H(n)); od:
-
Mathematica
CoefficientList[Series[(1-x)/Sqrt[1-4*x+2*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
-
PARI
x='x+O('x^66); Vec( serlaplace((1-x)/sqrt(1-4*x+2*x^2)) ) \\ Joerg Arndt, Oct 08 2013
Formula
a(n) = Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k), with a(1)=1, a(2)=1.
E.g.f.: (1/2)*(1 - sqrt(1 - 4*x + 2*x^2)). - Thomas Wieder, May 02 2009, edited by May Cai, Feb 13 2024
a(n) ~ sqrt(2+2*sqrt(2))/2 * n^n * (2+sqrt(2))^n / exp(n). - Vaclav Kotesovec, Oct 07 2013
Extensions
Added more terms, Joerg Arndt, Oct 08 2013
Name corrected by Andrey Zabolotskiy, Mar 06 2018
Comments