A137597 Triangle read by rows: A008277 * A007318.
1, 2, 1, 5, 5, 1, 15, 22, 9, 1, 52, 99, 61, 14, 1, 203, 471, 385, 135, 20, 1, 877, 2386, 2416, 1140, 260, 27, 1, 4140, 12867, 15470, 9156, 2835, 455, 35, 1, 21147, 73681, 102215, 72590, 28441, 6230, 742, 44, 1
Offset: 1
Examples
First few rows of the triangle: 1; 2, 1; 5, 5, 1; 15, 22, 9, 1; 52, 99, 61, 14, 1; 203, 471, 385, 135, 20, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See p. 16.
Programs
-
Maple
T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, k-1), j=k..n): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 03 2019
-
Mathematica
Table[Sum[StirlingS2[n, j]*Binomial[j - 1, k - 1], {j, k, n}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Aug 31 2023 *)
Comments