A096259 Longest period of an abstract version of the game of Go on a 1 X n board.
1, 2, 6, 24, 70, 180, 294, 112, 270, 900, 330, 792
Offset: 1
Examples
The case n=3: t 1 2 3 3 4 4 5 6 6 7 7 + x x x x x + x x + x x + + + x x x + + o o o + + + o o + o o o o o o + t=1 and t=7 are the same, so the period is 6. a(12) = 12 * 2^0 * (12 + 6 + 3 + 10 + 5 + 9 + 7 + 8 + 4 + 2 + 1 - 1) = 792.
Formula
For 4<=n, a(n) = n * 2^p * ( Sum_{0<=k<=m} ( Sum_{0<=i<=h_k} n_k/2^i ) - 1 ) where p = m Mod 2, n_0 = n, n_k = n - [n_{k-1}/2^(h_{k-1}+1)] - 1, 2^h_k is the highest power of two dividing n_k: n_m/2^h_m = 1.
Comments