A137614 Triangle read by rows: A000012 * A047812 as infinite lower triangular matrices.
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 18, 28, 12, 1, 6, 31, 76, 63, 19, 1, 7, 51, 176, 232, 131, 27, 1, 8, 79, 370, 693, 617, 248, 39, 1, 9, 119, 722, 1821, 2284, 1458, 450, 53, 1, 10, 173, 1337, 4338, 7243, 6553, 3211, 773, 74, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins: 1; 2, 1; 3, 4, 1; 4, 9, 8, 1; 5, 18, 28, 12, 1; 6, 31, 76, 63, 19, 1; 7, 51, 176, 232, 131, 27, 1; ...
Links
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, preprint, 1992. (Annotated scanned copy)
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
Programs
-
PARI
A(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) ); T(n,k) = sum(s=k+1, n, A(s,k)); vector(15, n, vector(n, k, T(n, k-1))) \\ Petros Hadjicostas, Jun 01 2020
Formula
T(n,k) = Sum_{s=k+1..n} A047812(s,k) for n >= 1 and 0 <= k <= n-1. - Petros Hadjicostas, Jun 01 2020
Comments