cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137632 Sums of 2 cubes of distinct odd primes.

Original entry on oeis.org

152, 370, 468, 1358, 1456, 1674, 2224, 2322, 2540, 3528, 4940, 5038, 5256, 6244, 6886, 6984, 7110, 7202, 8190, 9056, 11772, 12194, 12292, 12510, 13498, 14364, 17080, 19026, 24416, 24514, 24732, 25720, 26586, 29302, 29818, 29916, 30134
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Examples

			3^3 + 5^3 = 152 = a(1).
3^3 + 7^3 = 370 = a(2).
5^3 + 7^3 = 468 = a(3).
		

Crossrefs

A subset of A120398 and A086119. Cf. A138853, A138854.

Programs

  • Maple
    A137632 := proc(amax) local a,p,q; a := {} ; p := 3 ; while p^3 < amax do q := nextprime(p) ; while p^3+q^3 < amax do a := a union {p^3+q^3} ; q := nextprime(q) ; od: p := nextprime(p) ; od: sort(convert(a,list)) ; end: A137632(80000) ; # R. J. Mathar, May 04 2008
  • Mathematica
    f[upto_]:=Module[{max=Ceiling[Power[upto-27, (3)^-1]],prs}, prs=Prime[Range[2,max]]; Select[Union[Total/@(Subsets[prs,{2}]^3)], #<=upto&]]; f[31000] (* Harvey P. Dale, Apr 20 2011 *)

Extensions

More terms from R. J. Mathar, Apr 13 2008, May 04 2008