A137715 Prime values of n for which n*2^k + 1 is composite for all positive integers k.
271129, 322523, 327739, 482719, 934909, 1639459, 2131043, 2131099, 2576089, 3098059, 3608251, 4573999, 6678713, 6799831, 7523281, 7761437, 8184977, 8840599, 8879993, 8959163, 9208337, 9252323, 9930469, 9937637, 10192733, 10306187, 10391933, 11206501
Offset: 1
Keywords
Examples
As 271129 is the first known prime value of n for which n*2^k + 1 is composite for all positive integers k, a(1) = 271129.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..3670
- R. Baillie, G. Cormack, and H. C. Williams, The Problem of Sierpinski Concerning k*2^n+1, Mathematics of Computation, Vol. 37, No. 155 (July 1981), pp. 229-231. Corrigenda; Mathematics of Computation, Vol. 39, No. 159 (July 1982), p. 308.
- Wilfrid Keller, Factors of Fermat Numbers and Large Primes of the Form k*2^n+1, Mathematics of Computation, Vol. 41, No. 164 (October 1983), pp. 661-673.
- Mersenne Forum, The Prime Sierpinski Problem.
- Seventeen or Bust, A Distributed Attack on the Sierpinski problem
- W. Sierpinski, Sur un problème concernant les nombres k*2^n+1, Elem. d. Math. 15, pp. 73-74, 1960.
Extensions
More terms from Arkadiusz Wesolowski, Apr 24 2012
Comments