A137736 Number of set partitions of [n*(n-1)/2].
1, 1, 1, 5, 203, 115975, 1382958545, 474869816156751, 6160539404599934652455, 3819714729894818339975525681317, 139258505266263669602347053993654079693415, 359334085968622831041960188598043661065388726959079837
Offset: 0
Keywords
Examples
a(4) = Bell(6) = 203.
Programs
-
Maple
seq(combinat[bell](n*(n-1)/2), n=0..12);
-
Mathematica
a[n_]=BellB[n(n-1)/2];Array[a,12,0] (* James C. McMahon, Jun 02 2025 *)
Formula
a(n) = Bell(n*(n-1)/2) = A000110(n*(n-1)/2).
a(n) = Sum_{k=0..(n^2-n)/2} Stirling2((n^2-n)/2,k).
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 24 2024
Comments