cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137785 Triangular sequence of coefficients of the expansion of p(x,t) = exp(x*t)*(1 + t^2)^2/(t*(1 - t^2)).

Original entry on oeis.org

0, 1, 6, 0, 1, 0, 18, 0, 1, 96, 0, 36, 0, 1, 0, 480, 0, 60, 0, 1, 2880, 0, 1440, 0, 90, 0, 1, 0, 20160, 0, 3360, 0, 126, 0, 1, 161280, 0, 80640, 0, 6720, 0, 168, 0, 1, 0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1, 14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 28 2008

Keywords

Examples

			{0, 1},
{6, 0, 1},
{0, 18, 0, 1},
{96, 0, 36, 0, 1},
{0, 480, 0, 60, 0, 1},
{2880, 0, 1440, 0, 90, 0, 1},
{0, 20160, 0, 3360, 0, 126, 0, 1},
{161280, 0, 80640, 0, 6720, 0, 168, 0, 1},
{0, 1451520, 0, 241920, 0, 12096, 0, 216, 0, 1},
{14515200, 0, 7257600, 0, 604800, 0, 20160, 0, 270, 0, 1},
{0, 159667200, 0, 26611200, 0, 1330560, 0, 31680, 0, 330, 0, 1}
		

References

  • The Beauty of Fractals, Springer-Verlag, New York, 1986, editors Peitgen and Richter, pages 153
  • Terrell Hill, Statistical Mechanics, Dover, 1987, page 329 ff

Crossrefs

Cf. A136264.

Programs

  • Mathematica
    p[t_] = Exp[x*t]*(1 + t^2)^2/(t*(1 - t^2));
    Table[ ExpandAll[(n + 1)!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], { n, 0, 10}];
    a = Table[(n + 1)!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
    Flatten[a]