A137815 Year numbers: numbers n such that phi(n) = 2 phi(sigma(n)).
5, 13, 37, 61, 65, 73, 119, 157, 185, 193, 277, 305, 313, 365, 397, 421, 457, 481, 541, 613, 661, 673, 733, 757, 785, 793, 877, 949, 965, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1385, 1453, 1547, 1565, 1615, 1621, 1657, 1753, 1873, 1933, 1985, 1993
Offset: 1
References
- R. K. Guy, "Euler's Totient Function", "Solutions of phi(m)=sigma(n)", "Iterations of phi and sigma", "Behavior of phi(sigma(n)) and sigma(phi(n))". =A7 B36-B42 in Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 138-151, 2004.
- Doug Iannucci, in: Gerry Myerson (ed.), 2007 Western Number Theory problems set.
Links
- M. F. Hasler, Table of n, a(n) for n=1,...,7499.
Crossrefs
Programs
-
Mathematica
Select[Range[2000],EulerPhi[#]==2EulerPhi[DivisorSigma[1,#]]&] (* Harvey P. Dale, Mar 18 2011 *)
-
PARI
for( n=1,10^7, eulerphi(n)==2*eulerphi(sigma(n)) && print1(n", "))
Comments