cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A137816 Nonsquarefree "year numbers" (numbers n such that phi(n) = 2*phi(sigma(n)): A137815).

Original entry on oeis.org

5491, 8075, 25317, 27455, 71383, 72283, 76131, 104975, 138575, 193041, 203167, 295569, 295947, 298775, 334951, 356915, 361415, 400843, 451535, 492275, 509575, 572975, 589475, 595975, 654493, 683757, 815975, 862087, 876627, 919075, 936729
Offset: 1

Views

Author

R. K. Guy, R. J. Mathar and M. F. Hasler, Feb 11 2008

Keywords

Comments

This is the subsequence of nonsquarefree elements of A137815. See there for more comments and references.
There are only 32 such numbers below 10^6, 145 below 10^7 and 785 below 10^8.

Crossrefs

Programs

  • Mathematica
    Reap[For[n=1, n<10^6, n++, If[!SquareFreeQ[n] && EulerPhi[n] == 2*EulerPhi[ DivisorSigma[1, n]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2016 *)
  • PARI
    for( n=1,10^6, !issquarefree(n) && eulerphi(n)==2*eulerphi(sigma(n)) && print1(n", "))

A137817 Cubeful "year numbers" (such that phi(n) = 2 phi(sigma(n)): A137815).

Original entry on oeis.org

295569, 295947, 1586763, 1811079, 1964375, 2069469, 4473387, 5854375, 6820555, 7285923, 10936053, 12233457, 13260625, 18029709, 18052767, 21153663, 21576537, 21604131, 22182093, 22877451, 23744043, 25536875, 28340307, 34102775
Offset: 1

Views

Author

R. K. Guy, R. J. Mathar and M. F. Hasler, Feb 11 2008

Keywords

Comments

See A137815 for general comments and references about "year numbers". This is the subsequence of cubeful elements of A137815, i.e. its intersection with A046099. As such, it is of course also a subsequence of A137816.
There are only 56 such numbers below 10^8.

Crossrefs

Programs

  • PARI
    for( i=1,#A137816, vecmax( factor( A137816[i] )[,2])>2 && print1(A137816[i]", "))
    
  • PARI
    for( i=1,#A046099, eulerphi(A046099[i])==2*eulerphi(sigma(A046099[i])) && print1( A046099[i] ", "))
    
  • PARI
    for( n=1,10^9, issquarefree(n) && next; vecmax(factor(n)[,2])>2 || next; eulerphi(n)==2*eulerphi(sigma(n)) && print1(n", "))

A006872 Numbers k such that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1

Views

Author

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A000203, A062401, A353637 (characteristic function).
Positions of zeros in A353636.
Setwise difference of A353684 and A353683, and also of A353685 and A353686.
Intersection of A353684 and A353685.
Subsequences: A260021, A353634, A353635, A353679 (odd terms).

Programs

  • Haskell
    a006872 n = a006872_list !! (n-1)
    a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..]
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Magma
    [n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
  • Mathematica
    Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
    

Extensions

More terms from Jud McCranie

A137819 Year numbers, i.e., phi(n) = 2 phi(sigma(n)), divisible by a 5th prime power.

Original entry on oeis.org

1811079, 4473387, 67009923, 77242167, 88605819, 110475819, 120781449, 132208767, 134082297, 165515319, 183408867, 225548469, 232275681, 272876607, 284339403, 326557251, 349538247, 402371793, 425844621, 501668883, 566867727
Offset: 1

Views

Author

R. K. Guy, R. J. Mathar and M. F. Hasler, Feb 11 2008

Keywords

Comments

See A137815 for more comments and references about "year numbers". This is the subsequence of elements of A137815 divisible by a 5th prime power. As such, it is of course also a subsequence of A137818 (those divisible by a 4th prime power).
There are only 5 such numbers below 10^8.

Crossrefs

Programs

  • PARI
    for( i=1,#A137816, vecmax(factor(A137816[i])[,2])>4 & print1(A137816[i])", ")
    
  • PARI
    for( n=1,10^9, issquarefree(n) && next; vecmax(factor(n)[,2])>4 || next; eulerphi(n)==2*eulerphi(sigma(n)) && print1(n", "))

Extensions

More terms from Russell Pochis (joebobpumpkin(AT)gmail.com), May 30 2010
Typo in data corrected by D. S. McNeil, Aug 17 2010

A067704 Numbers n such that phi(sigma(n)) = 2*phi(n).

Original entry on oeis.org

2, 6, 8, 9, 24, 28, 70, 78, 128, 140, 222, 234, 280, 312, 350, 366, 384, 438, 496, 525, 666, 864, 888, 910, 918, 936, 942, 1036, 1098, 1158, 1232, 1314, 1400, 1464, 1575, 1662, 1708, 1752, 1824, 1836, 1878, 1900, 1938, 2044, 2382, 2480, 2526, 2590, 2664
Offset: 1

Views

Author

Benoit Cloitre, Feb 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],EulerPhi[DivisorSigma[1,#]]==2EulerPhi[#]&] (* Harvey P. Dale, Oct 15 2020 *)
  • PARI
    is(n)=2*eulerphi(n=factor(n))==eulerphi(sigma(n)) \\ Charles R Greathouse IV, Nov 27 2013

A137818 Non-biquadratefree "year numbers": phi(n) = 2 phi(sigma(n)) and p^4 | n for some p>1.

Original entry on oeis.org

295569, 1811079, 1964375, 2069469, 4473387, 5854375, 10936053, 13260625, 18029709, 21576537, 22182093, 25536875, 35595625, 46404333, 49648383, 55094375, 57044817, 58650625, 67009923, 69166467, 72681875, 76106875
Offset: 1

Views

Author

R. K. Guy, R. J. Mathar and M. F. Hasler, Feb 11 2008

Keywords

Comments

See A137815 for general comments and references about "year numbers". This is the subsequence of elements of A137815 divisible by a biquadrateful number, i.e. its intersection with A046101 (numbers divisible by the 4th power of some prime). As such, it is of course also a subsequence of A137817 and a fortiori of A137816.
There are only 28 such numbers below 10^8.

Crossrefs

Programs

  • PARI
    for( i=1,#A137816, vecmax( factor( A137816[i])[,2])>3 && print1(A137816[i]", "))
    
  • PARI
    for( i=1,#A046099, eulerphi(A046099[i])==2*eulerphi(sigma(A046099[i])) && print1( A046099[i] ", "))
    
  • PARI
    for( n=1,10^9, issquarefree(n) && next; vecmax(factor(n)[,2])>3 || next; eulerphi(n)==2*eulerphi(sigma(n)) && print1(n", "))

A226953 Leap year numbers: numbers n such that tau(phi(n)) = phi(tau(n))^2, where tau(n) is the number of divisors of n and phi(n) the Euler totient function.

Original entry on oeis.org

1, 2, 9, 14, 15, 18, 20, 22, 46, 94, 118, 166, 214, 231, 248, 286, 308, 310, 334, 344, 350, 351, 358, 366, 372, 392, 399, 405, 406, 430, 454, 483, 490, 494, 516, 518, 522, 526, 532, 536, 568, 595, 598, 632, 638, 644, 654, 663, 666
Offset: 1

Views

Author

Jean-François Alcover, Jun 24 2013

Keywords

Comments

Paraphrasing Doug Iannucci, n is called a "leap year number" if tau(phi(n)) = phi(tau(n))^2 (366 is a leap year number, hence the sequence name). The beast number is a leap year number. The only prime leap year number is 2.

Examples

			phi(666)=216, tau(216)=16, tau(666)=12, phi(12)=4, 4^2=16, therefore 666 is in the sequence.
		

Crossrefs

Cf. A137815 (Doug Iannucci's "year numbers").

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[0, EulerPhi[#]] == EulerPhi[DivisorSigma[0, #]]^2 &]
Showing 1-7 of 7 results.