A137845 Logarithmically smooth numbers; numbers n whose largest prime factor is less than log(n).
8, 16, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 128, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675, 720, 729, 750, 768, 800
Offset: 1
Keywords
Examples
48 = 2^4 * 3, and log(48) = 3.8712... > 3. Hence 48 is in the sequence. 49 = 7^2 but log(49) = 3.89182... < 7, so 49 is not in the sequence.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Mathematica
Select[Range[2,1000], FactorInteger[#][[-1,1]] < Log[#] &]
-
PARI
sm(N, p)=if(p==2, return(powers(2, logint(N, 2)))); my(v=[], q=precprime(p-1), t=1); for(e=0, logint(N, p), v=concat(v, sm(N\t, q)*t); t*=p); Set(v) smCapped(N, p, lim)=my(v=sm(N\1,p), i); i=setsearch(v,lim\=1,1); if(i==0, i=setsearch(v,lim)+1); v[i..#v] list(lim)=if(lim<8,return([])); my(P=primes([2,log(lim\=1)\1]),v=[]); for(i=2,#P, v=concat(v,smCapped(exp(P[i]),P[i-1],exp(P[i-1])))); v=concat(v,smCapped(lim,P[#P],exp(P[#P]))); v \\ Charles R Greathouse IV, Apr 16 2020
Comments