cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A163111 Prime numbers with gaps larger than 18 towards both neighboring primes.

Original entry on oeis.org

3967, 11027, 11657, 14107, 16033, 16787, 18013, 18617, 18637, 18839, 19661, 21247, 23719, 24281, 24571, 29101, 30367, 31357, 32749, 33247, 33679, 33997, 35201, 36037, 37747, 38501, 40063, 40387, 42533, 42611, 43691, 43913, 44417, 46957
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&!PrimeQ[p+2]&&!PrimeQ[p-4]&&!PrimeQ[p+4]&&!PrimeQ[p-6]&&!PrimeQ[p+6]&& !PrimeQ[p-8]&&!PrimeQ[p+8]&&!PrimeQ[p-10]&&!PrimeQ[p+10]&&!PrimeQ[p-12]&&!PrimeQ[p+12]&&!PrimeQ[p-14]&&!PrimeQ[p+14]&&!PrimeQ[p-16]&&!PrimeQ[p+16]&&!PrimeQ[p-18]&&!PrimeQ[p+18], AppendTo[lst,p]],{n,8!}];lst
    Select[Partition[Prime[Range[5000]],3,1],Min[Differences[#]]>18&][[All,2]] (* Harvey P. Dale, Jul 08 2021 *)

Formula

{A000040(i) : A001223(i) > 18 and A001223(i-1) > 18}. - R. J. Mathar, Jul 27 2009

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009

A163112 Prime numbers with gaps larger than 20 towards both neighboring primes.

Original entry on oeis.org

16033, 16787, 18013, 23719, 24281, 29101, 32749, 33247, 33679, 33997, 37747, 38501, 40063, 40387, 42533, 42611, 44417, 46957, 51109, 51383, 53479, 54217, 55291, 55763, 56333, 56569, 58271, 58511, 58831, 59833, 61441, 61781, 62273, 66137, 66271, 69593, 69623
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A163111.

Crossrefs

Programs

  • Maple
    p := 2; q := 3; r := 3; for n from 2 to 15000 do if q-p > 20 and r-q > 20 then printf("%d,",q) ; fi; p := q; q := r; r := nextprime(r) ; od: # R. J. Mathar, Jul 27 2009
  • Mathematica
    Select[Partition[Prime[Range[7000]],3,1],Min[Differences[#]]>20&] [[All, 2]] (* Harvey P. Dale, Mar 16 2017 *)

Formula

{A000040(i) : A001223(i) > 20 and A001223(i-1) > 20}. - R. J. Mathar, Jul 27 2009

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009

A167839 Five-times-isolated primes: primes p such that none of (p-10,p-8,p-6,p-4,p-2,p+2,p+4,p+6,p+8,p+10) are prime.

Original entry on oeis.org

2, 211, 1511, 1847, 2179, 2503, 2579, 2633, 2819, 2939, 3137, 3271, 3433, 3659, 3967, 3989, 4111, 4177, 4409, 4621, 4691, 4703, 4831, 4889, 5039, 5209, 5261, 5623, 5939, 5953, 6619, 6637, 6883, 7057, 7283, 7369, 7393, 7433, 7621, 7741, 7841, 7853, 7963
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 13 2009

Keywords

Comments

Essentially the same as A137872. [From R. J. Mathar, Dec 06 2009]
Includes almost all primes.

Examples

			a(1)=2 (-8,-6,-4,-2,0,4,6,8,10,12 are nonprimes); a(2)=211 (201,203,205,207,209,213,215,217,219,221 are nonprimes).
		

Extensions

1831 was incorrect. 3967 appeared twice. 4703, 5209 and 5261 were missing. Added more terms Dmitry Kamenetsky, Nov 30 2009
Editing and comment by Charles R Greathouse IV, Mar 25 2010
Showing 1-3 of 3 results.