cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163111 Prime numbers with gaps larger than 18 towards both neighboring primes.

Original entry on oeis.org

3967, 11027, 11657, 14107, 16033, 16787, 18013, 18617, 18637, 18839, 19661, 21247, 23719, 24281, 24571, 29101, 30367, 31357, 32749, 33247, 33679, 33997, 35201, 36037, 37747, 38501, 40063, 40387, 42533, 42611, 43691, 43913, 44417, 46957
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&!PrimeQ[p+2]&&!PrimeQ[p-4]&&!PrimeQ[p+4]&&!PrimeQ[p-6]&&!PrimeQ[p+6]&& !PrimeQ[p-8]&&!PrimeQ[p+8]&&!PrimeQ[p-10]&&!PrimeQ[p+10]&&!PrimeQ[p-12]&&!PrimeQ[p+12]&&!PrimeQ[p-14]&&!PrimeQ[p+14]&&!PrimeQ[p-16]&&!PrimeQ[p+16]&&!PrimeQ[p-18]&&!PrimeQ[p+18], AppendTo[lst,p]],{n,8!}];lst
    Select[Partition[Prime[Range[5000]],3,1],Min[Differences[#]]>18&][[All,2]] (* Harvey P. Dale, Jul 08 2021 *)

Formula

{A000040(i) : A001223(i) > 18 and A001223(i-1) > 18}. - R. J. Mathar, Jul 27 2009

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009

A163112 Prime numbers with gaps larger than 20 towards both neighboring primes.

Original entry on oeis.org

16033, 16787, 18013, 23719, 24281, 29101, 32749, 33247, 33679, 33997, 37747, 38501, 40063, 40387, 42533, 42611, 44417, 46957, 51109, 51383, 53479, 54217, 55291, 55763, 56333, 56569, 58271, 58511, 58831, 59833, 61441, 61781, 62273, 66137, 66271, 69593, 69623
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A163111.

Crossrefs

Programs

  • Maple
    p := 2; q := 3; r := 3; for n from 2 to 15000 do if q-p > 20 and r-q > 20 then printf("%d,",q) ; fi; p := q; q := r; r := nextprime(r) ; od: # R. J. Mathar, Jul 27 2009
  • Mathematica
    Select[Partition[Prime[Range[7000]],3,1],Min[Differences[#]]>20&] [[All, 2]] (* Harvey P. Dale, Mar 16 2017 *)

Formula

{A000040(i) : A001223(i) > 20 and A001223(i-1) > 20}. - R. J. Mathar, Jul 27 2009

Extensions

Definition rephrased by R. J. Mathar, Jul 27 2009
Showing 1-2 of 2 results.