A137921 Number of divisors d of n such that d+1 is not a divisor of n.
1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 3, 4, 5, 2, 5, 2, 5, 4, 3, 4, 6, 2, 3, 4, 6, 2, 5, 2, 5, 6, 3, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 3, 2, 7, 2, 3, 6, 6, 4, 6, 2, 5, 4, 7, 2, 8, 2, 3, 6, 5, 4, 6, 2, 8, 5, 3, 2, 8, 4, 3, 4, 7, 2, 8, 4, 5, 4, 3, 4, 9, 2, 5, 6, 7, 2, 6, 2, 7, 8
Offset: 1
Examples
The divisors of 30 are 1,2,3,5,6,10,15,30. The divisor islands are (1,2,3), (5,6), (10), (15), (30). (Note that the differences between consecutive divisors 5-3, 10-6, 15-10 and 30-15 are all > 1.) There are 5 such islands, so a(30)=5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor Function.
Crossrefs
Programs
-
Haskell
a137921 n = length $ filter (> 0) $ map ((mod n) . (+ 1)) [d | d <- [1..n], mod n d == 0] -- Reinhard Zumkeller, Nov 23 2011
-
Maple
with(numtheory): disl := proc (b) local ct, j: ct := 1: for j to nops(b)-1 do if 2 <= b[j+1]-b[j] then ct := ct+1 else end if end do: ct end proc: seq(disl(divisors(n)), n = 1 .. 120); # Emeric Deutsch, Feb 12 2010
-
Mathematica
f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &]; Array[f, 105] (* f(n) from Bobby R. Treat *) (* Robert G. Wilson v, Feb 22 2010 *) Table[Count[Differences[Divisors[n]],?(#>1&)]+1,{n,110}] (* _Harvey P. Dale, Jun 05 2012 *) a[n_] := DivisorSum[n, Boole[!Divisible[n, #+1]]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
a(n)=my(d,s=0);if(n%2,numdiv(n),d=divisors(n);for(i=1,#d,if(n%(d[i]+1),s++));s)
-
PARI
a(n)=sumdiv(n,d,(n%(d+1)!=0)); \\ Joerg Arndt, Jan 06 2015
-
Python
from sympy import divisors def A137921(n): return len([d for d in divisors(n,generator=True) if n % (d+1)]) # Chai Wah Wu, Jan 05 2015
Formula
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024
Extensions
Corrected and edited by Charles R Greathouse IV, Apr 19 2010
Edited by N. J. A. Sloane, Aug 10 2010
Comments