A137964 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^4.
1, 1, 4, 26, 184, 1451, 12020, 103734, 921132, 8364877, 77317704, 725029730, 6880482816, 65955731874, 637703938860, 6211709281162, 60900108419200, 600486291654444, 5950951929703520, 59242473406384472, 592166933647780576
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..350
Programs
-
PARI
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^4);polcoeff(A,n)}
-
PARI
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Formula
G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137965.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(5*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(5-6*s) / ((190*s - 160)*Pi)) / (n^(3/2) * r^n), where r = 0.0927175295193852172913829423030505161354091369581... and s = 1.270497495855793662015513509713357933752729700697... are real roots of the system of equations s = 1 + r*(1 + r*s^5)^4, 20 * r^2 * s^4 * (1 + r*s^5)^3 = 1. - Vaclav Kotesovec, Nov 22 2017