cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137956 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^4.

Original entry on oeis.org

1, 1, 4, 14, 64, 301, 1500, 7738, 40948, 221278, 1215284, 6765148, 38083556, 216431253, 1240048740, 7155236960, 41542685352, 242513393884, 1422608044604, 8381507029660, 49574494112992, 294260899150492, 1752288415205896
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[2*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^4);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137955.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(2*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(2-3*s) / ((28*s - 16)*Pi)) / (n^(3/2) * r^n), where r = 0.1569043698639381952962655091205241634381480571697... and s = 1.683635070625292013962854364673077567156937629734... are real roots of the system of equations s = 1 + r*(1 + r*s^2)^4, 8 * r^2 * s * (1 + r*s^2)^3 = 1. - Vaclav Kotesovec, Nov 22 2017

A137963 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^5.

Original entry on oeis.org

1, 1, 5, 25, 160, 1075, 7671, 56760, 431865, 3357790, 26558520, 213032988, 1728808700, 14168337265, 117096909495, 974842628790, 8167462511193, 68813778610350, 582675107162175, 4955767502292960, 42318868510894860
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^5);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^5 where B(x) is the g.f. of A137962.
a(n) = Sum_{k=0..n-1} C(5*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(5*s*(1-s)*(3-4*s) / ((84*s - 60)*Pi)) / (n^(3/2) * r^n), where r = 0.1085884782751570249717333800652227343328635496829... and s = 1.404764002126311415321709718173984955120001713401... are real roots of the system of equations s = 1 + r*(1 + r*s^3)^5, 15 * r^2 * s^2 * (1 + r*s^3)^4 = 1. - Vaclav Kotesovec, Nov 22 2017

A137965 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^5.

Original entry on oeis.org

1, 1, 5, 30, 220, 1725, 14356, 124020, 1102770, 10023680, 92722620, 870039474, 8261024380, 79225392830, 766302511445, 7466883915800, 73227699088806, 722228333119200, 7159117292177840, 71284856957207030, 712673042497177450
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^5);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^5 where B(x) is the g.f. of A137964.
a(n) = Sum_{k=0..n-1} C(5*(n-k),k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(5*s*(1-s)*(4-5*s) / ((152*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.0927175295193852172913829423030505161354091369581... and s = 1.306924048536121339538817141295744998528778296640... are real roots of the system of equations s = 1 + r*(1 + r*s^4)^5, 20 * r^2 * s^3 * (1 + r*s^4)^4 = 1. - Vaclav Kotesovec, Nov 22 2017

A137971 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.

Original entry on oeis.org

1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137972.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(6-7*s) / ((276*s - 240)*Pi)) / (n^(3/2) * r^n), where r = 0.0833821738312503523008482260558417829257343369560... and s = 1.229254439060935443156800948762443928645579909446... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^4, 24 * r^2 * s^5 * (1 + r*s^6)^3 = 1. - Vaclav Kotesovec, Nov 22 2017

A137958 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^4.

Original entry on oeis.org

1, 1, 4, 18, 100, 587, 3660, 23640, 157076, 1066281, 7363620, 51568732, 365369868, 2614235293, 18862816112, 137096744232, 1002785827620, 7376023180645, 54525165453672, 404858512190316, 3018190533410664, 22581907465905018
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[3*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^4);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^4 where B(x) is the g.f. of A137957.
a(n) = Sum_{k=0..n-1} C(4*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(4*s*(1-s)*(3-4*s) / ((66*s - 48)*Pi)) / (n^(3/2) * r^n), where r = 0.1243879037293364492255197677726812528516871521834... and s = 1.442260525872978775674461288363175530136608288804... are real roots of the system of equations s = 1 + r*(1 + r*s^3)^4, 12 * r^2 * s^2 * (1 + r*s^3)^3 = 1. - Vaclav Kotesovec, Nov 22 2017
Showing 1-5 of 5 results.