A137956
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^4.
Original entry on oeis.org
1, 1, 4, 14, 64, 301, 1500, 7738, 40948, 221278, 1215284, 6765148, 38083556, 216431253, 1240048740, 7155236960, 41542685352, 242513393884, 1422608044604, 8381507029660, 49574494112992, 294260899150492, 1752288415205896
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[2*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137964
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^4.
Original entry on oeis.org
1, 1, 4, 26, 184, 1451, 12020, 103734, 921132, 8364877, 77317704, 725029730, 6880482816, 65955731874, 637703938860, 6211709281162, 60900108419200, 600486291654444, 5950951929703520, 59242473406384472, 592166933647780576
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137970
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^6.
Original entry on oeis.org
1, 1, 6, 33, 236, 1776, 14148, 117070, 995568, 8653068, 76508562, 686035674, 6223653276, 57018806567, 526802616954, 4902775644477, 45919926029588, 432511043009679, 4094087001128088, 38927025591433926, 371607779425490280
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137972
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^6.
Original entry on oeis.org
1, 1, 6, 39, 320, 2787, 25788, 247731, 2449188, 24753960, 254610962, 2656496133, 28046838948, 299085697722, 3216723340218, 34852657892685, 380063012970680, 4168108473073596, 45941874232280862, 508664757809869052
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137958
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^4.
Original entry on oeis.org
1, 1, 4, 18, 100, 587, 3660, 23640, 157076, 1066281, 7363620, 51568732, 365369868, 2614235293, 18862816112, 137096744232, 1002785827620, 7376023180645, 54525165453672, 404858512190316, 3018190533410664, 22581907465905018
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[3*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Showing 1-5 of 5 results.