A137968
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^6.
Original entry on oeis.org
1, 1, 6, 27, 158, 981, 6342, 42728, 295008, 2079882, 14908740, 108312873, 795836544, 5903472999, 44151306690, 332552305818, 2520416719368, 19207222744326, 147086508325056, 1131292622149352, 8735383810590486
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137970
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^6.
Original entry on oeis.org
1, 1, 6, 33, 236, 1776, 14148, 117070, 995568, 8653068, 76508562, 686035674, 6223653276, 57018806567, 526802616954, 4902775644477, 45919926029588, 432511043009679, 4094087001128088, 38927025591433926, 371607779425490280
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137971
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.
Original entry on oeis.org
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137973
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^5.
Original entry on oeis.org
1, 1, 5, 40, 355, 3495, 36251, 391650, 4355810, 49550130, 573811635, 6742112506, 80175836395, 963137138105, 11670425726255, 142471372540290, 1750641388279500, 21634966222174020, 268734270298502640
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^5);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137974
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^6.
Original entry on oeis.org
1, 1, 6, 45, 410, 4020, 41826, 452207, 5033910, 57300285, 663912420, 7804131660, 92838682242, 1115595461915, 13521340799310, 165104951405235, 2029162664033790, 25081468301798301, 311593507408597920
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Showing 1-5 of 5 results.
Comments