A137968
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^6.
Original entry on oeis.org
1, 1, 6, 27, 158, 981, 6342, 42728, 295008, 2079882, 14908740, 108312873, 795836544, 5903472999, 44151306690, 332552305818, 2520416719368, 19207222744326, 147086508325056, 1131292622149352, 8735383810590486
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137969
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^3.
Original entry on oeis.org
1, 1, 3, 21, 136, 1032, 8139, 66975, 567417, 4915386, 43350639, 387889254, 3512655498, 32133132074, 296496163113, 2756279003712, 25790064341592, 242699145598212, 2295564345035100, 21811226043019788, 208084639385653938
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137971
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.
Original entry on oeis.org
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137972
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^6.
Original entry on oeis.org
1, 1, 6, 39, 320, 2787, 25788, 247731, 2449188, 24753960, 254610962, 2656496133, 28046838948, 299085697722, 3216723340218, 34852657892685, 380063012970680, 4168108473073596, 45941874232280862, 508664757809869052
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137974
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^6.
Original entry on oeis.org
1, 1, 6, 45, 410, 4020, 41826, 452207, 5033910, 57300285, 663912420, 7804131660, 92838682242, 1115595461915, 13521340799310, 165104951405235, 2029162664033790, 25081468301798301, 311593507408597920
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^6);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Showing 1-5 of 5 results.
Comments