A137957
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^3.
Original entry on oeis.org
1, 1, 3, 15, 79, 468, 2895, 18670, 123765, 838860, 5785503, 40473729, 286504086, 2048388112, 14770313397, 107290913232, 784380664232, 5766985753620, 42614014459911, 316304429143995, 2357275139670183, 17631888703154172
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[3*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137959
G.f. satisfies A(x) = 1 + x + x^2*A(x)^5.
Original entry on oeis.org
1, 1, 1, 5, 15, 55, 220, 876, 3645, 15485, 66735, 292155, 1293456, 5782320, 26071435, 118402495, 541150155, 2487204315, 11488482130, 53302256250, 248293549685, 1160794446445, 5444674773325, 25614768620105, 120837493137460
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[5*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5));polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137956
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^2)^4.
Original entry on oeis.org
1, 1, 4, 14, 64, 301, 1500, 7738, 40948, 221278, 1215284, 6765148, 38083556, 216431253, 1240048740, 7155236960, 41542685352, 242513393884, 1422608044604, 8381507029660, 49574494112992, 294260899150492, 1752288415205896
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[2*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^2)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(2*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137964
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^4.
Original entry on oeis.org
1, 1, 4, 26, 184, 1451, 12020, 103734, 921132, 8364877, 77317704, 725029730, 6880482816, 65955731874, 637703938860, 6211709281162, 60900108419200, 600486291654444, 5950951929703520, 59242473406384472, 592166933647780576
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137971
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.
Original entry on oeis.org
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Showing 1-5 of 5 results.