A019497
Number of ternary search trees on n keys.
Original entry on oeis.org
1, 1, 1, 3, 6, 16, 42, 114, 322, 918, 2673, 7875, 23457, 70551, 213846, 652794, 2004864, 6190612, 19207416, 59850384, 187217679, 587689947, 1850692506, 5845013538, 18509607753, 58759391013, 186958014766, 596108115402, 1904387243796, 6095040222192, 19540540075824
Offset: 0
James Fill (jimfill(AT)jhu.edu)
-
A:= proc(n) option remember; if n=0 then 1 else convert(series(1+x+x^2*A(n-1)^3, x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=0..27); # Alois P. Heinz, Aug 22 2008
-
a[0] = 1; a[n_] := Sum[Binomial[1*(n-k), k]/(n-k)*Binomial[3*k, n-k-1], {k, 0, n-1}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 07 2015, after Paul D. Hanna *)
-
v=vector(50,j,1);for(n=3,50,A=sum(i=1,n,sum(j=1,n,sum(k=1,n,if(i+j+k-n,0,v[i]*v[j]*v[k]))));v[n]=A);a(n)=v[n+1];
-
{a(n)= local(A); if(n<0, 0, A= 1+O(x); forstep(k= 1, n, 2, A= 1+x+x*x*A^3); polcoeff(A, n))} /* Michael Somos, Mar 29 2007 */
-
{a(n)= if(n<0, 0, (-1)^n* polcoeff( serreverse((1-sqrt(1-4*x+4*x^3+x^2*O(x^n)))/2), n+1))} /* Michael Somos, Mar 29 2007 */
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(1*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137954
G.f. satisfies A(x) = 1 + x + x^2*A(x)^4.
Original entry on oeis.org
1, 1, 1, 4, 10, 32, 107, 360, 1270, 4544, 16537, 61092, 228084, 860056, 3269994, 12521488, 48250690, 186959312, 727989318, 2847167632, 11179394088, 44053232012, 174160578150, 690576010820, 2745713062854, 10944253432600
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x+x^2*A^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137966
G.f. satisfies A(x) = 1+x + x^2*A(x)^6.
Original entry on oeis.org
1, 1, 1, 6, 21, 86, 396, 1812, 8607, 41958, 207333, 1040234, 5281965, 27078756, 140021248, 729369474, 3823598232, 20158251814, 106809280563, 568471343322, 3037782047947, 16292380484454, 87669285293451, 473172657154822
Offset: 0
-
Flatten[{1, Table[Sum[Binomial[n-k,k]/(n-k) * Binomial[6*k,n-k-1], {k,0,n-1}], {n,1,30}]}] (* Vaclav Kotesovec, Nov 18 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^1);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137960
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^2.
Original entry on oeis.org
1, 1, 2, 11, 50, 275, 1560, 9212, 56082, 348675, 2207120, 14171155, 92075064, 604266000, 3999688050, 26670727220, 178997024610, 1208160130227, 8195828345756, 55849242272130, 382119958804520, 2624041637846210
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^2);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137958
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^4.
Original entry on oeis.org
1, 1, 4, 18, 100, 587, 3660, 23640, 157076, 1066281, 7363620, 51568732, 365369868, 2614235293, 18862816112, 137096744232, 1002785827620, 7376023180645, 54525165453672, 404858512190316, 3018190533410664, 22581907465905018
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[3*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A295504
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 - x^2/A(x)^2.
Original entry on oeis.org
1, 1, 1, 5, 11, 41, 110, 393, 1180, 4199, 13538, 48353, 163130, 585790, 2035789, 7353701, 26078670, 94767692, 340963400, 1246208999, 4531981344, 16653522634, 61062317840, 225484886305, 832165390554, 3086496104906, 11451263408809, 42640078377086, 158896249065150, 593747065988969, 2220821612331954, 8324534184912813, 31236600473715868, 117415053041080870
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 11*x^4 + 41*x^5 + 110*x^6 + 393*x^7 + 1180*x^8 + 4199*x^9 + 13538*x^10 + 48353*x^11 + 163130*x^12 + 585790*x^13 + 2035789*x^14 + 7353701*x^15 + 26078670*x^16 + 94767692*x^17 + 340963400*x^18 + 1246208999*x^19 + 4531981344*x^20 +...
such that A(x) = 1 + x*A(x)^2 - x^2/A(x)^2.
RELATED SERIES.
1/A(x)^2 = 1 - 2*x + x^2 - 8*x^3 + 4*x^4 - 44*x^5 + 18*x^6 - 302*x^7 + 8*x^8 - 2488*x^9 - 1484*x^10 - 23472*x^11 - 30265*x^12 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 12*x^3 + 33*x^4 + 114*x^5 + 349*x^6 + 1198*x^7 + 3897*x^8 + 13546*x^9 + 45865*x^10 + 161646*x^11 + 562318*x^12 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 22*x^3 + 69*x^4 + 237*x^5 + 781*x^6 + 2694*x^7 + 9165*x^8 + 32051*x^9 + 111633*x^10 + 395724*x^11 + 1402514*x^12 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 36*x^3 + 123*x^4 + 432*x^5 + 1496*x^6 + 5268*x^7 + 18505*x^8 + 65768*x^9 + 234078*x^10 + 840196*x^11 + 3023661*x^12 +...
where x^2 = A(x)^2 - A(x)^3 + x*A(x)^4.
Let F(x) be the series given by
F(x) = (1/x)*Series_Reversion(x*A(x)) = 1 - x + x^2 - 5*x^3 + 15*x^4 - 55*x^5 + 220*x^6 - 876*x^7 + 3645*x^8 - 15485*x^9 + 66735*x^10 +...+ (-1)^n*A137959(n)*x^n +...
then F(x) = 1 - x + x^2*F(x)^5.
-
{a(n) = local(A=1+x); for(i=1, n, A = 1 + x*A^2 - x^2/A^2 +x*O(x^n)); polcoeff(G=A, n)}
for(n=0,40,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments