A019497
Number of ternary search trees on n keys.
Original entry on oeis.org
1, 1, 1, 3, 6, 16, 42, 114, 322, 918, 2673, 7875, 23457, 70551, 213846, 652794, 2004864, 6190612, 19207416, 59850384, 187217679, 587689947, 1850692506, 5845013538, 18509607753, 58759391013, 186958014766, 596108115402, 1904387243796, 6095040222192, 19540540075824
Offset: 0
James Fill (jimfill(AT)jhu.edu)
-
A:= proc(n) option remember; if n=0 then 1 else convert(series(1+x+x^2*A(n-1)^3, x=0,n+1), polynom) fi end: a:= n-> coeff(A(n), x,n): seq(a(n), n=0..27); # Alois P. Heinz, Aug 22 2008
-
a[0] = 1; a[n_] := Sum[Binomial[1*(n-k), k]/(n-k)*Binomial[3*k, n-k-1], {k, 0, n-1}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 07 2015, after Paul D. Hanna *)
-
v=vector(50,j,1);for(n=3,50,A=sum(i=1,n,sum(j=1,n,sum(k=1,n,if(i+j+k-n,0,v[i]*v[j]*v[k]))));v[n]=A);a(n)=v[n+1];
-
{a(n)= local(A); if(n<0, 0, A= 1+O(x); forstep(k= 1, n, 2, A= 1+x+x*x*A^3); polcoeff(A, n))} /* Michael Somos, Mar 29 2007 */
-
{a(n)= if(n<0, 0, (-1)^n* polcoeff( serreverse((1-sqrt(1-4*x+4*x^3+x^2*O(x^n)))/2), n+1))} /* Michael Somos, Mar 29 2007 */
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(1*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137954
G.f. satisfies A(x) = 1 + x + x^2*A(x)^4.
Original entry on oeis.org
1, 1, 1, 4, 10, 32, 107, 360, 1270, 4544, 16537, 61092, 228084, 860056, 3269994, 12521488, 48250690, 186959312, 727989318, 2847167632, 11179394088, 44053232012, 174160578150, 690576010820, 2745713062854, 10944253432600
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x+x^2*A^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137959
G.f. satisfies A(x) = 1 + x + x^2*A(x)^5.
Original entry on oeis.org
1, 1, 1, 5, 15, 55, 220, 876, 3645, 15485, 66735, 292155, 1293456, 5782320, 26071435, 118402495, 541150155, 2487204315, 11488482130, 53302256250, 248293549685, 1160794446445, 5444674773325, 25614768620105, 120837493137460
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[5*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5));polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137967
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^2.
Original entry on oeis.org
1, 1, 2, 13, 66, 406, 2602, 17271, 118444, 829514, 5914980, 42791085, 313277294, 2316793170, 17281455882, 129867946828, 982293317064, 7472406051744, 57132051350160, 438797394096378, 3383870656327576, 26191385476141936
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^2);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137965
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^5.
Original entry on oeis.org
1, 1, 5, 30, 220, 1725, 14356, 124020, 1102770, 10023680, 92722620, 870039474, 8261024380, 79225392830, 766302511445, 7466883915800, 73227699088806, 722228333119200, 7159117292177840, 71284856957207030, 712673042497177450
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^5);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A295498
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 - x^2/A(x)^3.
Original entry on oeis.org
1, 1, 1, 6, 11, 51, 106, 492, 1115, 5317, 12912, 62283, 159146, 767083, 2036260, 9765849, 26735811, 127447531, 358219288, 1696410364, 4879284508, 22946311567, 67362378507, 314520916727, 940422623222, 4359165612216, 13252603911289, 60989336178364, 188258217816004, 860270701616648, 2692815154387672, 12220594038311373, 38750249291035303, 174684318231133053, 560585633201038635
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 11*x^4 + 51*x^5 + 106*x^6 + 492*x^7 + 1115*x^8 + 5317*x^9 + 12912*x^10 + 62283*x^11 + 159146*x^12 + 767083*x^13 + 2036260*x^14 + 9765849*x^15 + 26735811*x^16 + 127447531*x^17 + 358219288*x^18 + 1696410364*x^19 + 4879284508*x^20 +...
such that A(x) = 1 + x*A(x)^2 - x^2/A(x)^3.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 3*x^2 + 14*x^3 + 35*x^4 + 136*x^5 + 372*x^6 + 1430*x^7 + 4159*x^8 + 16242*x^9 + 49525*x^10 + 196040*x^11 + 618436*x^12 +...
A(x)^3 = 1 + 3*x + 6*x^2 + 25*x^3 + 75*x^4 + 276*x^5 + 868*x^6 + 3159*x^7 + 10293*x^8 + 37851*x^9 + 127023*x^10 + 472767*x^11 + 1622387*x^12 +...
A(x)^4 = 1 + 4*x + 10*x^2 + 40*x^3 + 135*x^4 + 496*x^5 + 1694*x^6 + 6144*x^7 + 21303*x^8 + 77636*x^9 + 273548*x^10 + 1005368*x^11 + 3591432*x^12 +...
A(x)^5 = 1 + 5*x + 15*x^2 + 60*x^3 + 220*x^4 + 826*x^5 + 2985*x^6 + 11010*x^7 + 39785*x^8 + 146525*x^9 + 532601*x^10 + 1969045*x^11 + 7208040*x^12 +...
where x^2 = A(x)^3 - A(x)^4 + x*A(x)^5.
Let F(x) be the series given by
F(x) = (1/x)*Series_Reversion(x*A(x)) = 1 - x + x^2 - 6*x^3 + 21*x^4 - 86*x^5 + 396*x^6 - 1812*x^7 + 8607*x^8 - 41958*x^9 + 207333*x^10 +...+ (-1)^n*A137966(n)*x^n +...
then F(x) = 1 - x + x^2*F(x)^6.
-
{a(n)=local(A=1+x); for(i=1, n, A = 1 + x*A^2 - x^2/A^3 +x*O(x^n)); polcoeff(G=A, n)}
for(n=0, 40, print1(a(n), ", "))
A371608
G.f. satisfies A(x) = ( 1 + x * (1 + x*A(x)^3) )^2.
Original entry on oeis.org
1, 2, 3, 14, 55, 226, 1042, 4840, 23103, 113118, 561568, 2826550, 14392534, 73967650, 383271596, 2000096144, 10502029735, 55446004880, 294155761676, 1567371462762, 8384300275607, 45009106969022, 242400290365756, 1309314066314354, 7091306989205453
Offset: 0
-
a(n, r=2, s=1, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
Showing 1-7 of 7 results.
Comments