A137957
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^3.
Original entry on oeis.org
1, 1, 3, 15, 79, 468, 2895, 18670, 123765, 838860, 5785503, 40473729, 286504086, 2048388112, 14770313397, 107290913232, 784380664232, 5766985753620, 42614014459911, 316304429143995, 2357275139670183, 17631888703154172
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[3*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^3);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(3*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137955
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^4)^2.
Original entry on oeis.org
1, 1, 2, 9, 36, 172, 842, 4310, 22676, 121896, 666884, 3699973, 20771096, 117765084, 673367034, 3878538930, 22483446152, 131070712924, 767929882240, 4519387797894, 26704456819984, 158367557278412, 942285096541344, 5623496055739052, 33653373190735484
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[2*(n-k),k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^4)^2);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137964
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^5)^4.
Original entry on oeis.org
1, 1, 4, 26, 184, 1451, 12020, 103734, 921132, 8364877, 77317704, 725029730, 6880482816, 65955731874, 637703938860, 6211709281162, 60900108419200, 600486291654444, 5950951929703520, 59242473406384472, 592166933647780576
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^5)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(5*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137971
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^4.
Original entry on oeis.org
1, 1, 4, 30, 232, 2037, 18720, 179454, 1770380, 17864490, 183510672, 1912621814, 20175123732, 214980182783, 2310645275932, 25021270486830, 272717638241172, 2989549949264304, 32938634975109864, 364566094737276708
Offset: 0
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
A137958
G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^4.
Original entry on oeis.org
1, 1, 4, 18, 100, 587, 3660, 23640, 157076, 1066281, 7363620, 51568732, 365369868, 2614235293, 18862816112, 137096744232, 1002785827620, 7376023180645, 54525165453672, 404858512190316, 3018190533410664, 22581907465905018
Offset: 0
-
Flatten[{1,Table[Sum[Binomial[4*(n-k),k]/(n-k)*Binomial[3*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^4);polcoeff(A,n)}
-
a(n)=if(n==0,1,sum(k=0,n-1,binomial(4*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009
Showing 1-5 of 5 results.