cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137970 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^6.

Original entry on oeis.org

1, 1, 6, 33, 236, 1776, 14148, 117070, 995568, 8653068, 76508562, 686035674, 6223653276, 57018806567, 526802616954, 4902775644477, 45919926029588, 432511043009679, 4094087001128088, 38927025591433926, 371607779425490280
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^6);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(6*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^6 where B(x) is the g.f. of A137969.
a(n) = Sum_{k=0..n-1} C(6*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(6*s*(1-s)*(3-4*s) / ((102*s - 72)*Pi)) / (n^(3/2) * r^n), where r = 0.0971328555591006631243189792661187629516513365080... and s = 1.377827066365760014851094517875193622070040930150... are real roots of the system of equations s = 1 + r*(1 + r*s^3)^6, 18 * r^2 * s^2 * (1 + r*s^3)^5 = 1. - Vaclav Kotesovec, Nov 22 2017