cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137985 Complementing any single bit in the binary representation of these primes does not produce a prime number.

Original entry on oeis.org

127, 173, 191, 223, 233, 239, 251, 257, 277, 337, 349, 373, 431, 443, 491, 509, 557, 653, 683, 701, 733, 761, 787, 853, 877, 1019, 1193, 1201, 1259, 1381, 1451, 1453, 1553, 1597, 1709, 1753, 1759, 1777, 1973, 2027, 2063, 2333, 2371, 2447, 2633, 2879, 2917, 2999
Offset: 1

Views

Author

T. D. Noe, Feb 26 2008

Keywords

Comments

If 2^m is the highest power of 2 in the binary representation of the prime p, there is no requirement that p+2^(m+1) be composite. Sequence A065092 imposes this extra requirement. The prime 223 is the first number in this sequence that is not in A065092.
Mentioned Feb 25 2008 by Terence Tao in his blog http://terrytao.wordpress.com. Tao proves that there are an infinite number of these primes in every fixed base.
Digitally delicate primes in base 2. - Marc Morgenegg, Apr 21 2021

Examples

			The numbers produced by complementing each of the 8 bits of 223 are 95, 159, 255, 207, 215, 219, 221 and 222, which are all composite.
		

Crossrefs

Cf. A050249 (analogous base 10 sequence), A186995 (weak primes in base n).
A065092 is a very similar sequence.

Programs

  • Maple
    q:= p-> isprime(p) and not ormap(i->isprime(Bits[Xor](p, 2^i)), [$0..ilog2(p)]):
    select(q, [$2..5000])[];  # Alois P. Heinz, Jul 28 2025
  • Mathematica
    t={}; k=1; While[Length[t]<100, k++; p=Prime[k]; d=IntegerDigits[p,2]; n=Length[d]; i=0; While[iT. D. Noe *)
    isWPbase2[z_] := NestWhile[#*2 &, 2, (# < z && ! PrimeQ@BitXor[z, #] &)] > z; Select[Prime /@ Range[3, PrimePi[10^6]], isWPbase2@# &] (* Terentyev Oleg, Jul 17 2011 *)
    Select[Prime[Range[500]], NoneTrue[BitXor[#, 2^Range[0, BitLength[#] - 1]], PrimeQ] &] (* Paolo Xausa, Apr 23 2025 *)
  • PARI
    f(p)={pow2=1;v=binary(p);L=#v;
    forstep(k=L,1,-1,if(v[k],p-=pow2;if(isprime(p),return(0),p+=pow2),p+=pow2;if(isprime(p),return(0),p-=pow2)); pow2*=2);return(1)}; forprime(p=2,2879,if(f(p), print1(p,", "))) \\ Washington Bomfim, Jan 18 2011
    
  • PARI
    is_A137985(n)=!for(k=1,n,isprime(bitxor(n,k)) && return;k+=k-1) && isprime(n) \\ Note: A bug in early versions of PARI 2.6 (execute "for(i=0,1,i>3 && error(buggy);i=9)" to check) makes that this is is_A065092 rather than is_A137985 as expected. For these versions, replace the upper limit n with n\2. \\ M. F. Hasler, Apr 05 2013
    
  • Python
    from sympy import isprime, primerange
    def ok(p): # p assumed prime
      return not any(isprime((1<Michael S. Branicky, Feb 16 2021

Extensions

Definition clarified by Chai Wah Wu, Jan 03 2019
Name edited by Paolo Xausa, Apr 24 2025