A137985 Complementing any single bit in the binary representation of these primes does not produce a prime number.
127, 173, 191, 223, 233, 239, 251, 257, 277, 337, 349, 373, 431, 443, 491, 509, 557, 653, 683, 701, 733, 761, 787, 853, 877, 1019, 1193, 1201, 1259, 1381, 1451, 1453, 1553, 1597, 1709, 1753, 1759, 1777, 1973, 2027, 2063, 2333, 2371, 2447, 2633, 2879, 2917, 2999
Offset: 1
Examples
The numbers produced by complementing each of the 8 bits of 223 are 95, 159, 255, 207, 215, 219, 221 and 222, which are all composite.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comp. 29 (1975), 79-81.
- Warren D. Smith et al., Primes such that every bit matters?, Yahoo group "primenumbers", April 2013.
- Warren D. Smith and others, Primes such that every bit matters?, digest of 14 messages in primenumbers Yahoo group, Apr 3 - Apr 9, 2013. [Cached copy]
- Terence Tao, A remark on primality testing and decimal expansions, arXiv:0802.3361 [math.NT], 2008-2010; Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413.
- Eric Weisstein, Weakly Prime. From MathWorld - A Wolfram Web Resource.
- Wikipedia, Delicate prime
Crossrefs
Programs
-
Maple
q:= p-> isprime(p) and not ormap(i->isprime(Bits[Xor](p, 2^i)), [$0..ilog2(p)]): select(q, [$2..5000])[]; # Alois P. Heinz, Jul 28 2025
-
Mathematica
t={}; k=1; While[Length[t]<100, k++; p=Prime[k]; d=IntegerDigits[p,2]; n=Length[d]; i=0; While[i
T. D. Noe *) isWPbase2[z_] := NestWhile[#*2 &, 2, (# < z && ! PrimeQ@BitXor[z, #] &)] > z; Select[Prime /@ Range[3, PrimePi[10^6]], isWPbase2@# &] (* Terentyev Oleg, Jul 17 2011 *) Select[Prime[Range[500]], NoneTrue[BitXor[#, 2^Range[0, BitLength[#] - 1]], PrimeQ] &] (* Paolo Xausa, Apr 23 2025 *) -
PARI
f(p)={pow2=1;v=binary(p);L=#v; forstep(k=L,1,-1,if(v[k],p-=pow2;if(isprime(p),return(0),p+=pow2),p+=pow2;if(isprime(p),return(0),p-=pow2)); pow2*=2);return(1)}; forprime(p=2,2879,if(f(p), print1(p,", "))) \\ Washington Bomfim, Jan 18 2011
-
PARI
is_A137985(n)=!for(k=1,n,isprime(bitxor(n,k)) && return;k+=k-1) && isprime(n) \\ Note: A bug in early versions of PARI 2.6 (execute "for(i=0,1,i>3 && error(buggy);i=9)" to check) makes that this is is_A065092 rather than is_A137985 as expected. For these versions, replace the upper limit n with n\2. \\ M. F. Hasler, Apr 05 2013
-
Python
from sympy import isprime, primerange def ok(p): # p assumed prime return not any(isprime((1<
Michael S. Branicky, Feb 16 2021
Extensions
Definition clarified by Chai Wah Wu, Jan 03 2019
Name edited by Paolo Xausa, Apr 24 2025
Comments