A137987 Decimal expansion of the inverse of the number whose Engel expansion has the sequence of factorial numbers (A000142) as coefficients.
3, 8, 6, 5, 7, 2, 8, 5, 1, 1, 2, 0, 0, 8, 5, 1, 2, 8, 5, 3, 8, 8, 3, 3, 5, 3, 0, 4, 8, 7, 3, 9, 2, 3, 2, 6, 8, 0, 1, 1, 2, 7, 2, 9, 8, 5, 8, 9, 2, 7, 4, 6, 4, 6, 8, 8, 9, 2, 5, 2, 2, 1, 3, 4, 4, 0, 4, 1, 0, 1, 1, 7, 3, 4, 1, 4, 5, 8, 4, 0, 7, 3, 3, 2, 1, 0, 1, 3, 6, 7, 0, 3, 3, 5, 9, 3, 9, 4, 7
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Pierce Expansion.
- Eric Weisstein's World of Mathematics, Engel Expansion.
Programs
-
Maple
P:=proc(n) local a,i,k; a:=0; k:=1; for i from 0 by 1 to n do k:=k*i!; a:=a+1/k; print(evalf(1/a,100)); od; end: P(100);
-
Mathematica
RealDigits[N[(1/Sum[Product[1/((k - 1)!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 02 2017 *)
Formula
Equals 1/A287013. - Amiram Eldar, Nov 19 2020