A137988 Decimal expansion of the number whose Pierce expansion has the sequence of double factorial numbers (A000165) as coefficients.
3, 5, 2, 8, 0, 6, 4, 3, 8, 1, 0, 6, 6, 5, 0, 0, 3, 6, 4, 6, 2, 1, 2, 3, 6, 0, 5, 3, 1, 0, 7, 3, 0, 0, 8, 6, 3, 1, 1, 1, 4, 5, 9, 6, 9, 4, 4, 4, 9, 9, 0, 1, 7, 4, 0, 2, 7, 4, 9, 4, 6, 3, 1, 0, 7, 1, 8, 6, 4, 7, 0, 1, 5, 3, 3, 6, 5, 6, 5, 4, 4, 1, 4, 5, 6, 9, 0, 9, 1, 8, 9, 6, 0, 9, 4, 8, 3, 3, 9
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric W. Weisstein, Pierce Expansion.
- Eric W. Weisstein, Engel Expansion.
Programs
-
Maple
P:=proc(n) local a,i,j,k,w; a:=0; w:=1; for i from 0 by 1 to n do k:=i; j:=i-2; while j>0 do k:=k*j; j:=j-2; od; if (i=0 or i=1) then k:=1; fi; if i=2 then k:=2; fi; w:=w*k; a:=a+(-1)^i/w; print(evalf(a,100)); od; end: P(100);
-
Mathematica
RealDigits[N[(Sum[(-1)^n*Product[1/((k + 1)!!), {k, 1, n}], {n, 1, 250}]), 100]][[1]] (* G. C. Greubel, Jan 01 2017 *)