A137994 a(n) is the smallest integer > a(n-1) such that {Pi^a(n)} < {Pi^a(n-1)}, where {x} = x - floor(x), a(1)=1.
1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885
Offset: 1
Examples
a(3)=81, since {Pi^81}=0.0037011283.., but {Pi^k}>=0.0062766802... for 1<=k<=80; thus {Pi^81}<{Pi^k} for 1<=k<81. - _Hieronymus Fischer_, Jan 06 2009
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 10000; p = .999; Select[Range[1, 5000], If[FractionalPart[Pi^#] < p, p = FractionalPart[Pi^#]; True] &] (* Robert Price, Mar 12 2019 *)
-
PARI
default(realprecision,10^4); print1(a=1); for(i=1,100, f=frac(Pi^a); until( frac(Pi^a++)
Extensions
a(11)-a(13) from Hieronymus Fischer, Jan 06 2009
Edited by R. J. Mathar, May 21 2010
a(14)-a(15) from Robert Price, Mar 12 2019
Comments