1, 17, 37, 237, 599, 615, 6638, 13885, 1063942, 9479731
Offset: 1
A080052
Value of n such that for any value of n, Pi^n is closer to its nearest integer than any value of Pi^k for 1 <= k < n.
Original entry on oeis.org
1, 2, 3, 58, 81, 157, 1030, 5269, 12128, 65875, 114791, 118885, 151710
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 22 2003
First term is 1 because this is just Pi = 3.14159....
Second term is 2 because Pi^2 = 9.869604... which is 0.13039... away from its nearest integer.
Pi^3 = 31.00627..., hence third term is 3.
Pi^58 is 0.00527... away from its nearest integer.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 58, p. 21, Ellipses, Paris 2008.
-
b := array(1..2000): Digits := 8000: c := 1: pos := 0: for n from 1 to 2000 do: exval := evalf(Pi^n): if (abs(exval-round(exval))
-
a = 1; Do[d = Abs[ Round[Pi^n] - N[Pi^n, Ceiling[ Log[10, Pi^n] + 24]]]; If[d < a, Print[n]; a = d], {n, 1, 25000}]
$MaxExtraPrecision = 10^9; a = 1; Do[d = Abs[ Round[Pi^n] - N[Pi^n, Ceiling[ Log[10, Pi^n] + 24]]]; If[d < a, Print[n]; a = d], {n, 1, 10^5}] (* Ryan Propper, Nov 13 2005 *)
-
f=0; for( i=1,99999, abs(frac(Pi^i)-.5)>f | next; f=abs(frac(Pi^i)-.5); print1(i",")) \\ M. F. Hasler, Apr 06 2008
A153693
Minimal exponents m such that the fractional part of (10/9)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 7, 50, 62, 324, 3566, 66877, 108201, 123956, 132891, 182098, 566593, 3501843
Offset: 1
a(2)=7, since fract((10/9)^7) = 0.09075.., but fract((10/9)^k) >= 0.11... for 1 <= k <= 6; thus fract((10/9)^7) < fract((10/9)^k) for 1 <= k < 7.
-
$MaxExtraPrecision = 100000;
p = 1; Select[Range[1, 10000],
If[FractionalPart[(10/9)^#] < p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
A153701
Minimal exponents m such that the fractional part of e^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795, 4920, 5469, 28414, 37373
Offset: 1
A153717
Minimal exponents m such that the fractional part of (Pi-2)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346
Offset: 1
A153721
Greatest number m such that the fractional part of (Pi-2)^A153717(n) <= 1/m.
Original entry on oeis.org
7, 7, 38, 318, 393, 396, 484, 2076, 2619, 4099, 5264, 8556, 18070, 20732, 27209, 73351, 356362
Offset: 1
a(3)=38 since 1/39<fract((Pi-2)^A153717(3))=fract((Pi-2)^23)=0.02600...<=1/38.
-
A153717 = {1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346};
Table[fp = FractionalPart[(Pi - 2)^A153717[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153717]}] (* Robert Price, Mar 26 2019 *)
Showing 1-10 of 12 results.
Next
Comments