cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A153713 Greatest number m such that the fractional part of Pi^A137994(n) <= 1/m.

Original entry on oeis.org

7, 159, 270, 307, 744, 757, 796, 1079, 1226, 7804, 13876, 62099, 70718, 86902, 154755
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=159 since 1/160<fract(Pi^A137994(2))=fract(Pi^3)=0.0062766...<=1/159.
		

Crossrefs

Programs

  • Mathematica
    A137994 = {1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885};
    Table[fp = FractionalPart[Pi^A137994[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A137994]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n) = floor(1/fract(Pi^A137994(n))), where fract(x) = x-floor(x).

Extensions

a(14)-a(15) from Robert Price, Mar 26 2019

A137995 Nearest integer to 1/frac(Pi^A137994(n)), where frac(x) = x - floor(x).

Original entry on oeis.org

7, 159, 270, 308, 745, 758, 796, 1080, 1227, 7805, 13876, 62099, 70718, 86902, 154756
Offset: 1

Views

Author

M. F. Hasler, inspired by Leroy Quet, Apr 05 2008

Keywords

Comments

Sequence A137994 could be defined as "least positive integer such that this one (without rounding) is increasing".
The term a(1)=7 is not surprising (3 + 1/7 = 3.14...) but it comes as a funny surprise that the next term, a(2)=159, matches the next 3 digits of Pi and a(3) just differs by 5 from the next 3 digits!

Crossrefs

Programs

  • PARI
    default(realprecision,10^4); f=1; for(i=1,10^9, frac(Pi^i)
    				

Extensions

a(7) inserted and a(11)-a(15) added by Amiram Eldar, Jun 28 2025

A153669 Minimal exponents m such that the fractional part of (101/100)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873, 75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546, 15896994, 71074288, 119325567
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (101/100)^m is less than the fractional part of (101/100)^k for all k, 1<=k
The next term is greater than 2*10^8.

Examples

			a(2)=70, since fract((101/100)^70)=0.00676..., but fract((101/100)^k)>=0.01 for 1<=k<=69; thus fract((101/100)^70)<fract((101/100)^k) for 1<=k<70.
		

Programs

  • Mathematica
    p = 1; Select[Range[1, 5000],
    If[FractionalPart[(101/100)^#] < p, p = FractionalPart[(101/100)^#];
    True] &] (* Robert Price, Mar 21 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((101/100)^m) < fract((101/100)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(15)-a(21) from Robert Gerbicz, Nov 22 2010

A153677 Minimal exponents m such that the fractional part of (1024/1000)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) is the least positive integer m such that the fractional part of (1024/1000)^m is less than the fractional part of (1024/1000)^k for all k, 1 <= k < m.
a(21) >= 4.5*10^6. - David A. Corneth, Mar 15 2019
a(22) > 10^7. Robert Price, Mar 16 2019

Examples

			a(2)=68, since fract((1024/1000)^68) = 0.016456..., but fract((1024/1000)^k) >= 0.024 for 1 <= k <= 67; thus fract((1024/1000)^68) < fract((1024/1000)^k) for 1 <= k < 68.
		

Programs

  • Mathematica
    $MaxExtraPrecision = 10000;
    p = .999;
    Select[Range[1, 50000],
    If[FractionalPart[(1024/1000)^#] < p,
    p = FractionalPart[(1024/1000)^#]; True] &] (* Robert Price, Mar 15 2019 *)
  • PARI
    upto(n) = my(res = List(), r = 1, p = 1); for(i=1, n, c = frac(p *= 1.024); if(cDavid A. Corneth, Mar 15 2019

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((1024/1000)^m) < fract((1024/1000)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(18) from Robert Price, Mar 15 2019
a(19)-a(20) from David A. Corneth, Mar 15 2019
a(21) from Robert Price, Mar 16 2019

A153685 Minimal exponents m such that the fractional part of (11/10)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 17, 37, 237, 599, 615, 6638, 13885, 1063942, 9479731
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (11/10)^m is less than the fractional part of (11/10)^k for all k, 1<=k
The next such number must be greater than 2*10^5.
a(11) > 10^7. Robert Price, Mar 19 2019

Examples

			a(2)=17, since fract((11/10)^17)=0.05447.., but fract((11/10)^k)>=0.1 for 1<=k<=16; thus fract((11/10)^17)<fract((11/10)^k) for 1<=k<17.
		

Programs

  • Mathematica
    p = 1; Select[Range[1, 50000],
     If[FractionalPart[(11/10)^#] < p, p = FractionalPart[(11/10)^#];
    True] &] (* Robert Price, Mar 19 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((11/10)^m) < fract((11/10)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(9)-a(10) from Robert Price, Mar 19 2019

A080052 Value of n such that for any value of n, Pi^n is closer to its nearest integer than any value of Pi^k for 1 <= k < n.

Original entry on oeis.org

1, 2, 3, 58, 81, 157, 1030, 5269, 12128, 65875, 114791, 118885, 151710
Offset: 1

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 22 2003

Keywords

Comments

Robert G. Wilson v used Mathematica with a changing number of digits to accommodate 24 digits to the right of the decimal point.
At 12128 the difference from an integer is 0.000016103224605297330719...
The sequence of rounded reciprocals of the distances, b(n) = round(1/(0.5-frac(Pi^a(n)-.5))) = round(1/abs(round(Pi^a(n))-Pi^a(n))), starts { 7, 8, 159, 190, 270, 2665, 10811, 26577, 62099, 70718, ... }. - M. F. Hasler, Apr 06 2008

Examples

			First term is 1 because this is just Pi = 3.14159....
Second term is 2 because Pi^2 = 9.869604... which is 0.13039... away from its nearest integer.
Pi^3 = 31.00627..., hence third term is 3.
Pi^58 is 0.00527... away from its nearest integer.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 58, p. 21, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    b := array(1..2000): Digits := 8000: c := 1: pos := 0: for n from 1 to 2000 do: exval := evalf(Pi^n): if (abs(exval-round(exval))
    				
  • Mathematica
    a = 1; Do[d = Abs[ Round[Pi^n] - N[Pi^n, Ceiling[ Log[10, Pi^n] + 24]]]; If[d < a, Print[n]; a = d], {n, 1, 25000}]
    $MaxExtraPrecision = 10^9; a = 1; Do[d = Abs[ Round[Pi^n] - N[Pi^n, Ceiling[ Log[10, Pi^n] + 24]]]; If[d < a, Print[n]; a = d], {n, 1, 10^5}] (* Ryan Propper, Nov 13 2005 *)
  • PARI
    f=0; for( i=1,99999, abs(frac(Pi^i)-.5)>f | next; f=abs(frac(Pi^i)-.5); print1(i",")) \\ M. F. Hasler, Apr 06 2008

Extensions

More terms from Carlos Alves and Robert G. Wilson v, Jan 23 2003
One more term from Ryan Propper, Nov 13 2005
a(11)-a(13) from Jeremy Elson, Nov 13 2011

A153693 Minimal exponents m such that the fractional part of (10/9)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 7, 50, 62, 324, 3566, 66877, 108201, 123956, 132891, 182098, 566593, 3501843
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m > a(n-1) such that the fractional part of (10/9)^m is less than the fractional part of (10/9)^k for all k, 1 <= k < m.
The next such number must be greater than 2*10^5.
a(14) > 10^7. - Robert Price, Mar 24 2019

Examples

			a(2)=7, since fract((10/9)^7) = 0.09075.., but fract((10/9)^k) >= 0.11... for 1 <= k <= 6; thus fract((10/9)^7) < fract((10/9)^k) for 1 <= k < 7.
		

Programs

  • Mathematica
    $MaxExtraPrecision = 100000;
    p = 1; Select[Range[1, 10000],
    If[FractionalPart[(10/9)^#] < p, p = FractionalPart[(10/9)^#];
    True] &] (* Robert Price, Mar 24 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((10/9)^m) < fract((10/9)^a(k-1))}, where fract(x) = x-floor(x).

Extensions

a(12)-a(13) from Robert Price, Mar 24 2019

A153701 Minimal exponents m such that the fractional part of e^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795, 4920, 5469, 28414, 37373
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of e^m is less than the fractional part of e^k for all k, 1<=k
The next such number must be greater than 100000.
a(18) > 300,000. Robert Price, Mar 23 2019

Examples

			a(4)=9, since fract(e^9)=0.08392..., but fract(e^k)>=0.08553... for 1<=k<=8; thus fract(e^9)<fract(e^k) for 1<=k<9.
		

Programs

  • Mathematica
    $MaxExtraPrecision = 100000;
    p = 1; Select[Range[1, 300000],
    If[FractionalPart[E^#] < p, p = FractionalPart[E^#]; True] &] (* Robert Price, Mar 23 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract(e^m) < fract(e^a(k-1))}, where fract(x) = x-floor(x).

A153717 Minimal exponents m such that the fractional part of (Pi-2)^m obtains a minimum (when starting with m=1).

Original entry on oeis.org

1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Comments

Recursive definition: a(1)=1, a(n) = least number m>a(n-1) such that the fractional part of (Pi-2)^m is less than the fractional part of (Pi-2)^k for all k, 1<=k
The next such number must be greater than 200000.
a(18) > 300000. - Robert Price, Mar 26 2019

Examples

			a(3)=23, since fract((Pi-2)^23)=0.0260069.., but fract((Pi-2)^k)>=0.1326... for 1<=k<=22; thus fract((Pi-2)^23)<fract((Pi-2)^k) for 1<=k<23.
		

Programs

  • Mathematica
    $MaxExtraPrecision = 100000;
    p = 1; Select[Range[1, 10000],
     If[FractionalPart[(Pi - 2)^#] < p, p = FractionalPart[(Pi - 2)^#];
    True] &] (* Robert Price, Mar 26 2019 *)

Formula

Recursion: a(1):=1, a(k):=min{ m>1 | fract((Pi-2)^m) < fract((Pi-2)^a(k-1))}, where fract(x) = x-floor(x).

A153721 Greatest number m such that the fractional part of (Pi-2)^A153717(n) <= 1/m.

Original entry on oeis.org

7, 7, 38, 318, 393, 396, 484, 2076, 2619, 4099, 5264, 8556, 18070, 20732, 27209, 73351, 356362
Offset: 1

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(3)=38 since 1/39<fract((Pi-2)^A153717(3))=fract((Pi-2)^23)=0.02600...<=1/38.
		

Programs

  • Mathematica
    A153717 = {1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346};
    Table[fp = FractionalPart[(Pi - 2)^A153717[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153717]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n) = floor(1/fract((Pi-2)^A153717(n))), where fract(x) = x-floor(x).
Showing 1-10 of 12 results. Next