A153673
Greatest number m such that the fractional part of (101/100)^A153669(n) <= 1/m.
Original entry on oeis.org
100, 147, 703, 932, 1172, 3389, 7089, 8767, 11155, 17457, 20810, 25355, 1129226, 1741049, 1960780, 2179637, 2859688, 11014240, 75249086, 132665447, 499298451
Offset: 1
a(2)=147 since 1/148<fract((101/100)^A153669(2))=fract((101/100)^70)=0.00676...<=1/147.
-
A153669 = {1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873,
75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546,
15896994, 71074288, 119325567};
Table[fp = FractionalPart[(101/100)^A153669[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153669]}] (* Robert Price, Mar 25 2019 *)
A154130
Exponents m with decreasing fractional part of (4/3)^m.
Original entry on oeis.org
1, 4, 13, 17, 128, 485, 692, 1738, 12863, 77042, 109705, 289047, 720429, 4475944, 75629223, 182575231
Offset: 1
a(3)=13, since fract((4/3)^13)=0.0923.., but fract((4/3)^k)>=0.16... for 1<=k<=12; thus fract((4/3)^13)<fract((4/3)^k) for 1<=k<13.
A137994
a(n) is the smallest integer > a(n-1) such that {Pi^a(n)} < {Pi^a(n-1)}, where {x} = x - floor(x), a(1)=1.
Original entry on oeis.org
1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885
Offset: 1
a(3)=81, since {Pi^81}=0.0037011283.., but {Pi^k}>=0.0062766802... for 1<=k<=80; thus {Pi^81}<{Pi^k} for 1<=k<81. - _Hieronymus Fischer_, Jan 06 2009
-
$MaxExtraPrecision = 10000;
p = .999;
Select[Range[1, 5000],
If[FractionalPart[Pi^#] < p, p = FractionalPart[Pi^#]; True] &] (* Robert Price, Mar 12 2019 *)
-
default(realprecision,10^4); print1(a=1); for(i=1,100, f=frac(Pi^a); until( frac(Pi^a++)
A153677
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094
Offset: 1
a(2)=68, since fract((1024/1000)^68) = 0.016456..., but fract((1024/1000)^k) >= 0.024 for 1 <= k <= 67; thus fract((1024/1000)^68) < fract((1024/1000)^k) for 1 <= k < 68.
-
$MaxExtraPrecision = 10000;
p = .999;
Select[Range[1, 50000],
If[FractionalPart[(1024/1000)^#] < p,
p = FractionalPart[(1024/1000)^#]; True] &] (* Robert Price, Mar 15 2019 *)
-
upto(n) = my(res = List(), r = 1, p = 1); for(i=1, n, c = frac(p *= 1.024); if(cDavid A. Corneth, Mar 15 2019
A153685
Minimal exponents m such that the fractional part of (11/10)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 17, 37, 237, 599, 615, 6638, 13885, 1063942, 9479731
Offset: 1
A153693
Minimal exponents m such that the fractional part of (10/9)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 7, 50, 62, 324, 3566, 66877, 108201, 123956, 132891, 182098, 566593, 3501843
Offset: 1
a(2)=7, since fract((10/9)^7) = 0.09075.., but fract((10/9)^k) >= 0.11... for 1 <= k <= 6; thus fract((10/9)^7) < fract((10/9)^k) for 1 <= k < 7.
-
$MaxExtraPrecision = 100000;
p = 1; Select[Range[1, 10000],
If[FractionalPart[(10/9)^#] < p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
A153701
Minimal exponents m such that the fractional part of e^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795, 4920, 5469, 28414, 37373
Offset: 1
A153717
Minimal exponents m such that the fractional part of (Pi-2)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346
Offset: 1
A153705
Greatest number m such that the fractional part of e^A153701(n) <= 1/m.
Original entry on oeis.org
1, 2, 11, 11, 23, 28, 69, 85, 115, 964, 1153, 1292, 1296, 1877, 34015, 156075, 952945
Offset: 1
a(3)=11 since 1/12 < fract(e^A153701(3)) = fract(e^3) = 0.0855... <= 1/11.
-
A153701 = {1, 2, 3, 9, 29, 45, 75, 135, 219, 732, 1351, 3315, 4795,
4920, 5469, 28414, 37373};
Table[fp = FractionalPart[E^A153701[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153701]}] (* Robert Price, Mar 25 2019 *)
A153721
Greatest number m such that the fractional part of (Pi-2)^A153717(n) <= 1/m.
Original entry on oeis.org
7, 7, 38, 318, 393, 396, 484, 2076, 2619, 4099, 5264, 8556, 18070, 20732, 27209, 73351, 356362
Offset: 1
a(3)=38 since 1/39<fract((Pi-2)^A153717(3))=fract((Pi-2)^23)=0.02600...<=1/38.
-
A153717 = {1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346};
Table[fp = FractionalPart[(Pi - 2)^A153717[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153717]}] (* Robert Price, Mar 26 2019 *)
Showing 1-10 of 14 results.
Next
Comments