1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 110, 180, 783, 859, 1803, 7591, 10763, 19105, 50172, 355146, 1101696, 1452050, 3047334, 3933030
Offset: 1
A153669
Minimal exponents m such that the fractional part of (101/100)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 70, 209, 378, 1653, 2697, 4806, 13744, 66919, 67873, 75666, 81125, 173389, 529938, 1572706, 4751419, 7159431, 7840546, 15896994, 71074288, 119325567
Offset: 1
A153670
Numbers k such that the fractional part of (101/100)^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 70, 209, 241, 378, 2697, 4806, 173389, 529938, 1334508, 1572706, 7840546, 15896994, 20204295, 71074288, 119325567
Offset: 1
a(10) = 70 since fract((101/100)^70) = 0.006... < 1/10, but fract((101/100)^k) > 0.1 >= 1/k for 10 <= k <= 69.
-
Select[Range[1000], FractionalPart[(101/100)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016 *)
-
from itertools import count, islice
def A153670gen(): # generator of terms
k10, k11 = 100, 101
for k in count(1):
if (k11 % k10)*k < k10:
yield k
k10 *= 100
k11 *= 101
A153670_list = list(islice(A153670gen(),16)) # Chai Wah Wu, Dec 23 2021
A153672
Numbers k such that the fractional part of (101/100)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 69, 180, 783, 859, 1803, 10763, 19105, 39568, 50172, 132572, 355146, 1452050, 2245950, 3047334, 3933030, 4165171, 98544173
Offset: 1
a(2) = 69, since fract((101/100)^69) = 0.9868... > 0.9855... = 1 - (1/69), but fract((101/100)^k) <= 1 - (1/k) for 1 < k < 69.
A137994
a(n) is the smallest integer > a(n-1) such that {Pi^a(n)} < {Pi^a(n-1)}, where {x} = x - floor(x), a(1)=1.
Original entry on oeis.org
1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885
Offset: 1
a(3)=81, since {Pi^81}=0.0037011283.., but {Pi^k}>=0.0062766802... for 1<=k<=80; thus {Pi^81}<{Pi^k} for 1<=k<81. - _Hieronymus Fischer_, Jan 06 2009
-
$MaxExtraPrecision = 10000;
p = .999;
Select[Range[1, 5000],
If[FractionalPart[Pi^#] < p, p = FractionalPart[Pi^#]; True] &] (* Robert Price, Mar 12 2019 *)
-
default(realprecision,10^4); print1(a=1); for(i=1,100, f=frac(Pi^a); until( frac(Pi^a++)
A153677
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a minimum (when starting with m=1).
Original entry on oeis.org
1, 68, 142, 341, 395, 490, 585, 1164, 1707, 26366, 41358, 46074, 120805, 147332, 184259, 205661, 385710, 522271, 3418770, 3675376, 9424094
Offset: 1
a(2)=68, since fract((1024/1000)^68) = 0.016456..., but fract((1024/1000)^k) >= 0.024 for 1 <= k <= 67; thus fract((1024/1000)^68) < fract((1024/1000)^k) for 1 <= k < 68.
-
$MaxExtraPrecision = 10000;
p = .999;
Select[Range[1, 50000],
If[FractionalPart[(1024/1000)^#] < p,
p = FractionalPart[(1024/1000)^#]; True] &] (* Robert Price, Mar 15 2019 *)
-
upto(n) = my(res = List(), r = 1, p = 1); for(i=1, n, c = frac(p *= 1.024); if(cDavid A. Corneth, Mar 15 2019
A153678
Numbers k such that the fractional part of (1024/1000)^k is less than 1/k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 585, 1164, 1707, 522271, 3675376, 3906074, 9424094
Offset: 1
a(7) = 585 since fract((1024/1000)^585) = 0.00139... < 1/585, but fract((1024/1000)^k) >= 1/k for 7 <= k <= 584.
-
Select[Range[2000], FractionalPart[(1024/1000)^#] < (1/#) &] (* G. C. Greubel, Aug 24 2016; corrected by Robert Price, Mar 16 2019 *)
-
isok(n) = frac((1024/1000)^n) < 1/n \\ Michel Marcus, Aug 06 2013
A153679
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 82, 134, 1306, 2036, 6393, 34477, 145984, 2746739, 2792428, 8460321
Offset: 1
A153680
Numbers k such that the fractional part of (1024/1000)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 29, 82, 134, 277, 1306, 2036, 2349, 6393, 9389, 9816, 21689, 34477, 145984, 171954, 956357, 2746739
Offset: 1
a(2) = 29, since fract((1024/1000)^29) = 0.98929... > 0.9655... = 1 - (1/29), but fract((1024/1000)^k) <= 1 - (1/k) for 1 < k < 29.
Showing 1-10 of 58 results.
Next
Comments
Examples
Crossrefs
Programs
Mathematica
Python
Formula
Extensions