A138012 a(n) = number of positive divisors, k, of n where d(k) divides n (where d(k) = number of positive divisors of k, A000005).
1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 1, 3, 1, 5, 1, 4, 1, 3, 1, 8, 1, 3, 2, 4, 1, 4, 1, 3, 1, 3, 1, 9, 1, 3, 1, 6, 1, 4, 1, 4, 2, 3, 1, 8, 1, 3, 1, 4, 1, 5, 1, 6, 1, 3, 1, 11, 1, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 12, 1, 3, 2, 4, 1, 4, 1, 8, 2, 3, 1, 11, 1, 3, 1, 6, 1, 7, 1, 4, 1, 3, 1, 10, 1, 3, 2, 4, 1, 4, 1, 6
Offset: 1
Keywords
Examples
10 has 4 divisors (1,2,5,10). The number of divisors of each of these divisors of 10 form the sequence (1,2,2,4). Of these, three divide 10: 1,2,2. So a(10) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) local div, ct, j: div:=divisors(n): ct:=0: for j to tau(n) do if `mod`(n, tau(div[j]))=0 then ct:=ct+1 else end if end do: ct end proc: seq(a(n),n=1..80); # Emeric Deutsch, Mar 14 2008
-
Mathematica
Table[Length[Select[Divisors[n], Mod[n, Length[Divisors[ # ]]] == 0 &]], {n,1,100}] (* Stefan Steinerberger *) f[n_] := Count[Mod[n, DivisorSigma[0, Divisors@n]], 0]; Array[f, 104] (* Robert G. Wilson v *)
-
PARI
A138012(n) = sumdiv(n,d,if(!(n%numdiv(d)), 1, 0)); \\ Antti Karttunen, May 25 2017
-
Python
from sympy import divisors, divisor_count def a(n): return sum([1*(n%divisor_count(d)==0) for d in divisors(n)]) # Indranil Ghosh, May 25 2017
Extensions
More terms from Stefan Steinerberger and Robert G. Wilson v, Feb 29 2008
Comments