A138034 Expansion of (1+3*x^2)/(1-x+x^2).
1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3
Offset: 0
Links
- Karem Boubaker and Lin Zhang, Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis, arXiv preprint arXiv:1203.2082, 2012. - From _N. J. A. Sloane_, Sep 15 2012
- Index entries for linear recurrences with constant coefficients, signature (1,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 + 3*x^2)/(1 - x + x^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jan 15 2017 *) LinearRecurrence[{1,-1},{1,1,3},120] (* Harvey P. Dale, Jun 14 2024 *)
Formula
a(n) = A119910(n), n>=1.
G.f.: (1+3*x^2)/(1-x+x^2). a(n)=a(n-1)-a(n-2), n>2.
Comments