cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A138046 Positive integers k such that (d(k+1) - d(k)) * (-1)^k is positive, where d(k) = the number of positive divisors of k.

Original entry on oeis.org

45, 62, 74, 81, 105, 117, 134, 146, 164, 165, 188, 194, 206, 225, 254, 261, 273, 274, 278, 284, 297, 314, 315, 325, 333, 345, 356, 357, 362, 385, 386, 398, 404, 405, 422, 428, 435, 441, 454, 458, 465, 477, 482, 494, 495, 513, 524, 525, 538, 554, 555, 561
Offset: 1

Views

Author

Leroy Quet, Mar 02 2008

Keywords

Comments

The number of terms < 10^m, for m >= 1: 0, 4, 104, 1320, 15000, 162705, ..., . The smallest term which is the beginning of n consecutive terms: 45, 164, 625, 2274, 30481, 150992, 624963, 726421, ..., . - Robert G. Wilson v, Mar 23 2008

Crossrefs

Cf. A138047.

Programs

  • GAP
    Filtered([1..1000],n->IsPosInt((Tau(n+1)-Tau(n))*(-1)^n)); # Muniru A Asiru, May 27 2018
    
  • Maple
    with(numtheory): a:=proc(n) if 0<(-1)^n*(tau(n+1)-tau(n)) then n else end if end proc: seq(a(n),n=1..500); # Emeric Deutsch, Mar 06 2008
    A051950 := proc(n) numtheory[tau](n)-numtheory[tau](n-1) ; end: A138046 := proc(n) option remember ; local a; if n = 1 then 45 ; else for a from A138046(n-1)+1 do if (-1)^a*A051950(a+1) > 0 then RETURN(a) ; fi ; od: fi ; end: seq(A138046(n),n=1..80) ; # R. J. Mathar, Mar 31 2008
  • Mathematica
    f[n_] := (DivisorSigma[0, n + 1] - DivisorSigma[0, n])*(-1)^n; Select[ Range@ 565, f@# > 0 &] (* Robert G. Wilson v, Mar 23 2008 *)
  • PARI
    isok(n) = (numdiv(n+1) - numdiv(n))*(-1)^n > 0; \\ Michel Marcus, May 27 2018

Extensions

More terms from Emeric Deutsch, Mar 06 2008
More terms from R. J. Mathar and Robert G. Wilson v, Mar 23 2008
Showing 1-1 of 1 results.