A138059 Numbers k such that k^0+(k+1)^1+(k+2)^2+(k+3)^3+(k+4)^4+(k+5)^5+(k+6)^6+(k+7)^7+(k+8)^8+(k+9)^9 is a prime.
123, 135, 201, 363, 987, 1485, 1545, 1593, 1713, 1947, 2211, 2391, 2571, 2577, 2751, 3093, 3273, 3375, 3381, 3693, 3801, 4155, 4407, 4521, 4587
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a={};Do[If[PrimeQ[n^70+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4+(n+5)^5+(n+6)^6+(n+7)^7+(n+8)^8+(n+9)^9],AppendTo[a,n]],{n,10^3*5}];a Select[Range[5000],PrimeQ[Total[Table[(#+i)^i,{i,0,9}]]]&] (* Harvey P. Dale, Jun 01 2019 *)