A138065 Numbers k such that k^0+(k+1)^1+(k+2)^2+(k+3)^3+(k+4)^4+(k+5)^5+(k+6)^6+(k+7)^7+(k+8)^8+(k+9)^9+(k+10)^10+(k+11)^11 is a prime.
26, 36, 40, 96, 152, 178, 246, 262, 276, 310, 360, 496, 568, 572, 586, 646, 654, 694, 706, 738, 808, 822, 828, 852, 898, 976, 988, 1010, 1060, 1090, 1160, 1182, 1206, 1226, 1240, 1262, 1354, 1368, 1448, 1452, 1504, 1536, 1584, 1644, 1758, 1776, 1816, 1962
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a={};Do[If[PrimeQ[n^70+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4+(n+5)^5+(n+6)^6+(n+7)^7+(n+8)^8+(n+9)^9+(n+10)^10+(n+11)^11],AppendTo[a,n]],{n,10^3}];a Select[Range[5000],PrimeQ[1+Total[Table[(#+i)^i,{i,11}]]]&] (* Harvey P. Dale, May 01 2017 *)
Extensions
More terms from Harvey P. Dale, May 01 2017